ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Principles of Digital Communications:
Summer Semester 2012

Assignment date: Feb 22, 2012
Due date: Feb 29, 2012

Homework 1

Reading Assignment for next Wednesday: Chapter 1 and Chapter 2 up to and including Section 2.2.1. (Binary Hypothesis Testing).

Problem 1. (Probabilities of Basic Events)
Assume that X_{1} and X_{2} are independent random variables that are uniformly distributed in the interval $[0,1]$. Compute the probability of the following events. Hint: For each event, identify the corresponding region inside the unit square.

1. $0 \leq X_{1}-X_{2} \leq \frac{1}{3}$.
2. $X_{1}^{3} \leq X_{2} \leq X_{1}^{2}$.
3. $X_{2}-X_{1}=\frac{1}{2}$.
4. $\left(X_{1}-\frac{1}{2}\right)^{2}+\left(X_{2}-\frac{1}{2}\right)^{2} \leq\left(\frac{1}{2}\right)^{2}$.
5. Given that $X_{1} \geq \frac{1}{4}$, compute the probability that $\left(X_{1}-\frac{1}{2}\right)^{2}+\left(X_{2}-\frac{1}{2}\right)^{2} \leq\left(\frac{1}{2}\right)^{2}$.

Problem 2. (Conditional Distribution)
Assume that X and Y are random variables with probability density function

$$
f_{X, Y}(x, y)= \begin{cases}A & 0 \leq x<y \leq 1 \\ 0 & \text { every where else }\end{cases}
$$

1. Are X and Y independent? Hint: Argue geometrically.
2. Find the value of A. Hint: Argue geometrically.
3. Find the marginal distribution of Y. Do it first by arguing geometrically then compute it formally.
4. Find $\Phi(y)=\mathbb{E}[X \mid Y=y]$. Hint: Argue geometrically.
5. Find $\mathbb{E}[\Phi(Y)]$ using the marginal distribution of Y.
6. Find $\mathbb{E}[X]$ and show that $\mathbb{E}[X]=\mathbb{E}[\mathbb{E}[X \mid Y]]$.

Problem 3. (Basic Probabilities)
Find the following probabilities:

- A box contains m white and n black balls. Suppose k balls are drawn. Find the probability of drawing at least one white ball.
- We have two coins; the first is fair and the second is two-headed. We pick one of the coins at random, we toss it twice and heads shows both times. Find the probability that the coin is fair. Hint: Define X as the random variable that takes value 0 when the coin is fair and 1 otherwise.

Problem 4. (Basic Probabilities)
We toss a biassed coin until head appears for the first time. Let T be the number of tosses and let p be the probability that head appears.

1. Find the probability mass function of the random variable T.
2. If $n>k \geq 1$ are two ineger valued numbers show that $\mathbb{P}[T=n \mid T>k]=\mathbb{P}[T=n-k]$ and interpret this result.
3. Argue that $\mathbb{E}[T \mid T>k]=k+\mathbb{E}[T]$.
