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Homework 7

Reading Part for next Wednesday: From Binary Equiprobable Case till End of Chapter

3 (13p).

Problem 1. (Non-coherent Detection)

This problem describes a communication scheme you may found useful for your

project in order to do sound communication, but for sure, you have to do some

modifications to make it work.

A transmitter and receiver pair communicate over a DAWGN (Discrete Additive White

Gaussian Noise) channel using OOK (on + off keying) signaling. To send bit 0, the trans-

mitter is simply off and doesn’t send any signal. Hence the receiver receives pure noise from

the channel. To send bit 1, the transmitter uses a cosinusoid with frequency f̃0. After sam-

pling the received signal at suitable intervals, we can assume that the received signal can

be modeled as ri = A cos (2πf0i+ θ) + Zi, i = 1, 2, ..., N − 1, where A is the amplitude

of the signal at the receiver, which is a fixed number and obviously A = 0 corresponds to

pure noise case. f0 is the discrete frequency of the signal which is between 0 and 1
2
, θ is a

random phase introduced by the channel and Zi, i = 0, 1, ..., N − 1 is the additive noise of

the channel which we assume to be i.i.d N (0, σ2).

1. First assume that we don’t have any phase uncertainty. Derive the MAP rule and find

the error probability as a function of the SNR , A2

σ2 (signal to noise ratio) and N .

Hint: you may use the following approximations for 0 < f0 <
1
2
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2. Can you intuitively say what the MAP rule is trying to do to extract bit 0 and 1 from

the channel noise ?

3. Now assume that you have the same MAP rule as you derived in part 1. Also assume

that the transmitter sends bit 1 (cosinusoid signal) but unfortunately this time what

you receive is ri = A cos (2πf0i+ θ0) + Zi, where θ0 is a fixed shift. In this case derive

the conditional error probability under H1 as a function of the SNR, N , and θ0.

4. Argue that the conditional error probability under H0 does not depend on θ0 and use

this fact to obtain an expression for the mean error probability as a function of SNR,

N , and θ0.

5. Argue that if the receiver does not pay attention to phase uncertainty, the mean error

probability can potentially be very large. This problem really happens in practice. For

example in your system for sound communication, because of the propagation delay of

the sound between the two laptops, which essentially cannot be controlled exactly, a

random phase is introduced. In other words, even if you send cos (2πf0n), the receiver

may receive cos (2πf0n+ θ0).

For example the speed of propagation of the sound in the air is 340 m/s. If we use

1kHz signal for communication, a simple calculation shows that 1 cm uncertainty ends

up in 10 degrees phase change. Hence you see that this effect can be really annoying.

Think about possible ways that you can use to solve this problem. How can you derive

phase-robust MAP rules ?

Problem 2. (Gram-Schmidt Procedure On Tuples)

Use the Gram-Schmidt orthonormalization procedure to find an orthonormal basis for the

subspace spanned by the vectors β1, . . . , β4 where β1 = (1, 0, 1, 1)T , β2 = (2, 1, 0, 1)T , β3 =

(1, 0, 1,−2)T , and β4 = (2, 0, 2,−1)T .

Problem 3. (Gram-Schmidt Procedure on Waveforms)

Consider the following functions s0(t), s1(t) and s2(t).
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1. Using the Gram-Schmidt procedure, determine an orthonormal basis {φ0(t), φ1(t)

,φ2(t)}.for the space spanned by {s0(t), s1(t), s2(t)}.

2. Let v1 = (3,−1, 1)T and v2 = (−1, 2, 3)T be two n-tuples of coefficients for the repre-

sentation of v1(t) and v2(t) respectively. What are the signals v1(t) and v2(t)? (You

can simply draw a detailed graph.)

3. Compute the inner product < v1(t), v2(t) >.

4. Find the inner product < v1,v2 >. How does it compare to the rseult you have found

in the previous question?

5. Find the norms ||v1(t)|| and ||v1|| and compare them.

Problem 4. (Matched Filter Intuition)

In this problem, we develop some further intuition about matched filters. We have seen that

an optimal receiver front end for the signal set {sj(t)}m−1
j=0 reduces the received (noisy) signal

R(t) to the m real numbers < R, sj >, j = 0, . . . ,m− 1. We gain additional intuition about

the operation < R, sj > by considering

R(t) = s(t) +N(t), (1)

where N(t) is additive white Gaussian noise of power spectral density N0/2 and s(t) is an

arbitrary but fixed signal. Let h(t) be an arbitrary waveform, and consider the receiver

operation

Y = < R, h >=< s, h > + < N, h > . (2)

The signal-to-noise ratio (SNR) is thus

SNR =
| < s, h > |2

E [| < N, h > |2]
. (3)

Notice that the SNR is not changed when h(t) is multiplied by a constant. Therefore, we

assume that h(t) is a unit energy signal and denote it by φ(t). Then,

E
[
| < N, φ > |2

]
=

N0

2
. (4)

1. Use Cauchy-Schwarz inequality to give an upper bound on the SNR. What is the

condition for equality in the Cauchy-Schwarz inequality? Find the φ(t) that maximizes

the SNR. What is the relationship between the maximizing φ(t) and the signal s(t)?

2. Let s = (s1, s2)
T and use calculus (instead of the Cauchy-Schwarz inequality) to find

the φ = (φ1, φ2)
T that maximizes < s, φ > subject to the constraint that φ has unit

energy.
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3. Hence to maximize the SNR, for each value of t we have to weigh (multiply) R(t) with

s(t) and then integrate. Verify with a picture (convolution) that the output at time T

of a filter with input s(t) and impulse response h(t) = s(T − t) is indeed
∫ T
0
s2(t)dt.

4. We may also look at the situation in terms of Fourier transforms. Write out the filter

operation in the frequency domain.

Problem 5. (AWGN Channel and Sufficient Statistic)

In this problem we consider communication over the AGN channel and show that the pro-

jection of the received signal onto the signal space spanned by the signals used at the sender

is not a sufficient statistic unless the noise is white.

Assume that we have only two hypotheses, i.e., H ∈ {0, 1}. Under H = 0 we send the signal

s0(t) and under H = 1 we send s1(t). Suppose that s0(t) and s1(t) can be spanned by the

orthogonal signals φ0(t) and φ1(t). Assume that the communication between the transmit-

ter and the receiver is across a continuous time additive noise channel where the noise may

be correlated. First assume that the additive noise is Z(t) = N0φ0(t) + N1φ1(t) + N2φ2(t)

for some φ2(t) which is orthogonal to φ0(t) and φ1(t) and N0, N1 and N2 are independent

Gaussian random variables with mean zero and variance σ2. There is a one-to-one correspon-

dence between the received waveform Y (t) and the n-tuple of coefficients Y = (Y0, Y1, Y2)

where Yi =< φi(t), Y (t) >. s0(t) and s1(t) can be represented by s0 = (s00, s01, 0) and

s1 = (s10, s11, 0) in the orthonormal basis {φ0(t), φ1(t), φ2(t)}.

1. Show that using vector representation, the new hypothesis testing problem can be

stated as H = i : Y = si + N i = 0, 1 in which N = (N0, N1, N2).

2. Use the Neyman-Fisher factorization theorem to show that Y0, Y1 is a sufficient statistic.

Also show that Y2 contains only noise under both hypotheses.

Now assume that N0 and N1 are independent Gaussian random variables with mean 0 and

variance σ2 but N2 = N1. In other words, noise has correlated components. We want to

show that in this case Y0, Y1 is not a sufficient statistic. In other words Y2 is also useful to

minimize the probability of the error in the underlying hypothesis testing problem. In the

following parts, for simplicity assume that s0 = (1, 0, 0) and s1 = (0, 1, 0) and H = 0 and

H = 1 are equiprobable.

1. Find the the minimum probability of the error when we have access only to Y0, Y1.

2. Show that by using Y0, Y1 and Y2 you can reduce the probability of the error. Specify

the decision rule that you suggest and evaluate its probability of error. Is your receiver

optimum in the sense of minimizing the probability of the error?

3. Argue that in this case (Y0, Y1) is not a sufficient statistic.
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