ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Principles of Digital Communications:	Assignment date: March 14, 2012
Summer Semester 2012	Due date: March 21, 2012

Solution of Homework 5

Problem 1. (QAM with Erasure)

$$P_{00} = Pr(\{N_1 \ge -a\} \cap \{N_2 \ge -a\})$$
$$= Pr(\{N_1 \le a\})Pr(\{N_2 \le a\})$$
$$= \left[1 - Q\left(\frac{a}{\sigma}\right)\right]^2.$$

By symmetry:

$$P_{01} = P_{03} = Pr(\{N_1 \le -(2b-a)\} \cap \{N_2 \ge -a\})$$
$$= Pr(\{N_1 \ge 2b-a\})Pr(\{N_2 \le a\})$$
$$= Q\left(\frac{2b-a}{\sigma}\right) \left[1 - Q\left(\frac{a}{\sigma}\right)\right].$$

$$P_{04} = Pr(\{N_1 \le -(2b-a)\} \cap \{N_2 \le -(2b-a)\})$$

= $Pr(\{N_1 \ge 2b-a\} \cap \{N_2 \ge 2b-a\})$
= $\left[Q\left(\frac{2b-a}{\sigma}\right)\right]^2$.

$$P_{0\delta} = 1 - Pr(\{Y \in \mathcal{R}_0\} \cup \{Y \in \mathcal{R}_1\} \cup \{Y \in \mathcal{R}_2\} \cup \{Y \in \mathcal{R}_3\} | \mathbf{s_0} \text{ was sent})$$

=1 - P₀₀ - P₀₁ - P₀₂ - P₀₃
=1 - $\left[1 - Q\left(\frac{a}{\sigma}\right)\right]^2 - 2Q\left(\frac{2b - a}{\sigma}\right) \left[1 - Q\left(\frac{a}{\sigma}\right)\right] - \left[Q\left(\frac{2b - a}{\sigma}\right)\right]^2$
=1 - $\left[1 - Q\left(\frac{a}{\sigma}\right) + Q\left(\frac{2b - a}{\sigma}\right)\right]^2$

Equivalently,

$$P_{0\delta} = Pr(\{N_1 \in [a, 2b-a]\} \cup \{N_2 \in [a, 2b-a]\})$$

= $Pr(N_1 \in [a, 2b-a]) + Pr(N_1 \in [a, 2b-a]) - Pr(\{N_1 \in [a, 2b-a]\}) \cap \{N_2 \in [a, 2b-a]\})$
= $2\left[Q\left(\frac{2b-a}{\sigma}\right) - Q\left(\frac{a}{\sigma}\right)\right] - \left[Q\left(\frac{2b-a}{\sigma}\right) - Q\left(\frac{a}{\sigma}\right)\right]^2,$

which gives the same result as before.

Problem 2. (Gaussian Hypothesis testing)

1. (a)

$$L(Y_1, ..., Y_n) = \frac{P(Y_1, ..., Y_N | H_1)}{P(Y_1, ..., Y_n | H_0)}$$

= $e^{\frac{|Y - \mu_0|^2 - |Y - \mu_1|^2}{2\sigma^2}}$
= $e^{\frac{2(\mu_1 - \mu_0)^T Y + ||\mu_0||^2 - ||\mu_1||^2}{2\sigma^2}}$

Taking the logarithm on both sides we obtain the simplified decision rule

$$(\mu_1 - \mu_0)^T Y \underset{H_1}{\overset{H_0}{\leq}} \frac{||\mu_1||^2 - ||\mu_0||^2}{2}$$

If we denote $a = \mu_1 - \mu_0$ and $b = ||\mu_1||^2 - ||\mu_0||^2$ we see that $a^T Y = b$ characterizes an n-dimensional hyperplane which passes through $\frac{\mu_1 + \mu_0}{2}$ and separates the two decision regions.

(b) Under H_1 ,

$$(\mu_1 - \mu_0)^T Y \sim N\left((\mu_1 - \mu_0)^T \mu_1, \sigma^2 ||\mu_1 - \mu_0||^2\right)$$

Hence we obtain

$$P(E|H_1) = Q\left(\frac{(\mu_1 - \mu_0)^T \mu_1 - \left(\frac{||\mu_1||^2 - ||\mu_0||^2}{2}\right)}{\sqrt{\sigma^2 ||\mu_1 - \mu_0||^2}}\right)$$

= $Q\left(\frac{||\mu_1 - \mu_0||}{2\sigma}\right)$
= $Q\left(\frac{d}{2\sigma}\right),$

where $d = ||\mu_1 - \mu_0||$ is the distance between the mean vectors. Similarly we can show that $P(E|H_0) = Q\left(\frac{d}{2\sigma}\right)$. Hence, $P(E) = Q\left(\frac{d}{2\sigma}\right)$.

2. (a)

$$L(Y_1, ..., Y_n) = \frac{P(Y_1, ..., Y_n | H_1)}{P(Y_1, ..., Y_n | H_0)}$$
$$= \left(\frac{\sigma_0}{\sigma_1}\right)^n e^{\left(\frac{\sigma_1^2 - \sigma_0^2}{2\sigma_1^2 \sigma_0^2} \sum_{i=0}^n Y_i^2\right)} \underset{H_1}{\overset{H_0}{\leq} 1}.$$

Taking logarithm and using $\sigma_1 > \sigma_0$ we obtain the simplified decision rule

$$\sum_{i=1}^{n} y_{i}^{2} \underset{H_{1}}{\overset{H_{0}}{\leq}} \frac{2\sigma_{1}^{2}\sigma_{0}^{2}}{\sigma_{1}^{2} - \sigma_{0}^{2}} \left(-n\log\frac{\sigma_{0}}{\sigma_{1}} \right) = \frac{2n\sigma_{1}^{2}\sigma_{0}^{2}}{\sigma_{1}^{2} - \sigma_{0}^{2}}\log\left(\frac{\sigma_{1}}{\sigma_{0}}\right).$$

The decision boundary is the n-dimensional hyper sphere where the points inside the sphere belong to H_0 whereas the points outside belong to H_1 .

(b) i. Let define $Z = Y_1^2 + Y_2^2$. We first obtain the CDF of Z as follows

$$F_Z(z) = P(Y_1^2 + Y_2^2 \le z)$$

=
$$\int_{Y_1^2 + Y_2^2 \le z} \frac{1}{2\pi\sigma^2} e^{-\frac{y_1^2 + y_2^2}{2\sigma^2}} dy_1 dy_2$$

And we apply the following change of variables: $y_1 = rsin(\theta)$ and $y_2 = rcos(\theta)$ (thus, $r^2 = y_1^2 + y_2^2$) and obtain:

$$= \int_{r=0}^{\sqrt{z}} \int_{\theta=0}^{2\pi} \frac{1}{2\pi\sigma^2} e^{-\frac{r^2}{2\sigma^2}} |det J(\theta, r)| dr d\theta$$

$$= \int_{r=0}^{\sqrt{z}} \frac{1}{2\pi\sigma^2} e^{-\frac{r^2}{2\sigma^2}} 2\pi r dr$$

$$= \left[-e^{-\frac{r^2}{2\sigma^2}} \right]_{0}^{\sqrt{z}}$$

$$= 1 - e^{-\frac{z}{2\sigma^2}}$$

Taking the derivative we obtain the probability density function $f_Z(z) = \frac{1}{2\sigma^2} e^{-\frac{z}{2\sigma^2}}$, which is an exponential with parameter $\frac{1}{2\sigma^2}$.

ii. For n = 2 and H_1 , we have

$$P(E|H_1) = P\left(Y_1^2 + Y_2^2 \ge \frac{4\sigma_1^2\sigma_0^2}{\sigma_1^2 - \sigma_0^2}\log(\frac{\sigma_1}{\sigma_0})|H_1\right)$$
$$= \int_0^{\frac{4\sigma_1^2\sigma_0^2}{\sigma_1^2 - \sigma_0^2}\log(\frac{\sigma_1}{\sigma_0})} \frac{1}{2\sigma_1^2}e^{-\frac{z}{2\sigma_1^2}}dz$$
$$= 1 - e^{-\frac{4\sigma_0^2}{\sigma_1^2 - \sigma_0^2}\log(\frac{\sigma_1}{\sigma_0})} = 1 - \left(\frac{\sigma_0}{\sigma_1}\right)^{\frac{4\sigma_0^2}{\sigma_1^2 - \sigma_0^2}}$$

Similarly, we obtain

$$P(E|H_0) = \int_{\frac{4\sigma_1^2 \sigma_0^2}{\sigma_1^2 - \sigma_0^2} \log \frac{\sigma_1}{\sigma_0}}^{\infty} \frac{1}{2\sigma_0^2} e^{-\frac{z}{2\sigma_0^2}} dz$$
$$= e^{-\frac{4\sigma_1^2}{\sigma_1^2 - \sigma_0^2} \log \frac{\sigma_1}{\sigma_0}} = \left(\frac{\sigma_0}{\sigma_1}\right)^{\frac{4\sigma_1^2}{\sigma_1^2 - \sigma_0^2}}$$

Let us denote $\rho = \frac{\sigma_1}{\sigma_0}$. Then we have :

$$P(E|H_0) = 1 - \left(\frac{1}{\rho}\right)^{\frac{4}{\rho^2 - 1}}, \ P(E|H_1) = \left(\frac{1}{\rho}\right)^{\frac{4\rho^2}{\rho^2 - 1}}$$

and $P(E) = \frac{1}{2} + \frac{1}{2} \left(\left(\frac{1}{\rho}\right)^{\frac{4\rho^2}{\rho^2 - 1}} - \left(\frac{1}{\rho}\right)^{\frac{4}{\rho^2 - 1}}\right)$

iii. Let us denote $A(\rho) = \left(\frac{1}{\rho}\right)^{\frac{4\rho^2}{\rho^2 - 1}}$ and $B(\rho) = \left(\frac{1}{\rho}\right)^{\frac{4}{\rho^2 - 1}}$. Using the Hopital rule we obtain:

$$\lim_{\rho \to \infty} \log B(\rho) = \lim_{\rho \to \infty} \frac{-4\log(\rho)}{\rho^2 - 1} = 0 \Rightarrow \lim_{\rho \to \infty} B(\rho) = 1, \text{ and } \lim_{\rho \to \infty} A(\rho) = 0^4 = 0$$

Hence

$$\lim_{\rho \to \infty} P(E) = 0.$$

Problem 3. (Repeat Codes and Bhattacharyya Bound)

1. First, we find the probability mass function of (W_1, \ldots, W_N) given each of the two hypotheses:

$$p_{W_1...W_N|H}(w_1,...,w_N|0) = Pr\{\operatorname{sgn}(X_1+Z_1) = w_1,...,\operatorname{sgn}(X_N+Z_N) = w_N|H=0\} \\ = Pr\{\operatorname{sgn}(X_1+Z_1) = w_1,...,\operatorname{sgn}(X_N+Z_N) = w_N \mid (X_1,...,X_N) = (1,...,1)\}$$
(1)

$$= Pr\{sgn(1+Z_1) = w_1, \dots, sgn(1+Z_N) = w_N\}$$
(2)

$$= Pr\{\operatorname{sgn}(1+Z_1) = w_1\} \cdot \ldots \cdot Pr\{\operatorname{sgn}(1+Z_N) = w_N\}.$$
(3)

But since the Z_i are independent of each other and have the same distribution (or, as we say more frequently, since the Z_i are iid random variables), we can write this also as

$$p_{W_1...W_N|H}(w_1,\ldots,w_N|0) = \prod_{i=1}^N \Pr\{\operatorname{sgn}(1+Z) = w_i\}.$$
 (4)

Notice that the event $\{W_i = \text{sgn}(1+Z) = 0\}$ has probability zero. Therefore, it is of no interest to our consideration. This means that the random variables W_i can only assume values 1 or -1. Suppose that (w_1, \ldots, w_N) contains k values of 1, and thus (N-k) values of -1. With this definition, we can rewrite

$$p_{W_1...W_N|H}(w_1,\ldots,w_N|0) = (Pr\{1+Z \ge 0\})^k (Pr\{1+Z \le 0\})^{N-k}.$$
 (5)

Let us introduce the following notation:

$$\epsilon \stackrel{def}{=} Pr\{(1+Z) \le 0\} = 1 - Q\left(-\frac{1}{\sigma}\right) = Q\left(\frac{1}{\sigma}\right).$$
(6)

Then, we can write

$$p_{W_1...W_N|H}(w_1,...,w_N|0) = (1-\epsilon)^k \epsilon^{N-k}.$$
 (7)

Under hypothesis H = 1, we have essentially the same derivation. Let us give only a few steps, using the same definitions of k (number of ones) and ϵ as above:

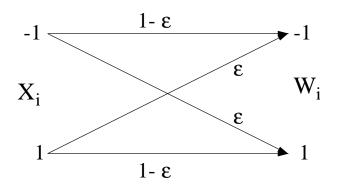
$$p_{W_1...W_N|H}(w_1,\ldots,w_N|1) = \prod_{i=1}^N \Pr\{sign(-1+Z) = w_i\}$$
(8)

$$= (Pr\{-1+Z \ge 0\})^{k} (Pr\{-1+Z \le 0\})^{N-k}$$
(9)

$$= \epsilon^k (1-\epsilon)^{N-k} \tag{10}$$

Thus, we see that k is a sufficient statistic.

At this point, we give a simple picture that allows to derive all of this much more easily: The overall system between X and W may be viewed as a channel with input 1 or -1 and output also 1 or -1. There is a certain probability ϵ (called *transition* or *crossover* probability) that the channel converts 1 into -1 or vice versa:



This particular channel is called the *Binary Symmetric Channel*. From this figure, various results can be found easily. For instance, it is clear that if we put N consecutive values 1 onto the channel, the probability of getting, at the output, a particular sequence (w_1, \ldots, w_N) which contains exactly k values of 1 is simply $(1 - \epsilon)^k \epsilon^{N-k}$.

Similarly, the probability of getting, at the output, any sequence that contains exactly k values of 1 is $\binom{N}{k}(1-\epsilon)^k \epsilon^{N-k}$ because there are $\binom{N}{k}$ distinct particular sequences with exactly k ones each, and every one of them has probability $(1-\epsilon)^k \epsilon^{N-k}$.

Next, we have to develop the likelihood ratio:

$$L(w_1, \dots, w_N) = \frac{p_{W_1 \dots W_N | H}(w_1, \dots, w_N | 1)}{p_{W_1 \dots W_N | H}(w_1, \dots, w_N | 0)}$$
(11)

$$= \frac{\epsilon^k (1-\epsilon)^{N-k}}{(1-\epsilon)^k \epsilon^{N-k}} = \left(\frac{\epsilon}{1-\epsilon}\right)^{2k-N}.$$
 (12)

In terms of the loglikelihood ratio, we find

$$\log L(w_1, \dots, w_N) = (2k - N) \log \left(\frac{\epsilon}{1 - \epsilon}\right) \stackrel{1}{\underset{0}{\gtrless}} 0.$$
(13)

Since $\epsilon < 1/2$, we know that $\log\left(\frac{\epsilon}{1-\epsilon}\right) < 0$, and thus, when we divide by this term, the direction of the inequality is changed. Using this, the decision rule can be written as

$$k \stackrel{1}{\leq} \frac{N}{2}.\tag{14}$$

That is, the best decision rule is simply *majority voting*: if the majority of the received values is 1, we decide for hypothesis H = 0 (i.e. transmitted value was 1); on the other hand, if the majority of the received values is -1, we decide for hypothesis H = 1 (i.e. transmitted value was -1).

2. Let us assume that N is odd. Then,

 $P_e(0) = Pr\{$ there are less than N/2 ones in the received sequence | N ones were transmitted $\}$ (15)

$$= \sum_{m=0}^{(N-1)/2} {N \choose m} (1-\epsilon)^m \epsilon^{N-m}$$
(16)

By the symmetry of the problem, $P_e(1)$ turns out to be the exact same expression, thus

$$P_e = \sum_{m=0}^{(N-1)/2} {N \choose m} (1-\epsilon)^m \epsilon^{N-m}$$
(17)

In case N is even, we introduce a slight asymmetry because the term for N/2 has to be assigned to either H = 0 or H = 1 (cannot be assigned to both).

Clearly, this sum cannot be evaluated explicitly. There are various techniques to bound it. In this homework, we consider the *Bhattacharyya bound* as encountered in class. 3. In class, you have seen the following derivation of the Bhattacharyya bound. For the optimal decision rule, we can write the probability of error as follows:

$$P_e = \sum_{w} \min_{w} \left\{ p_{W|H}(w|0) p_H(0), p_{W|H}(w|1) p_H(1) \right\},$$
(18)

where the sum is over all possible sequences w of length N. In our case, since $w_i \in \{-1, 1\}$, we have $w \in \{-1, 1\}^N$, and thus there are 2^N terms in the sum. But since for $a, b \ge 0$, we have that min $a, b \le \sqrt{ab}$, we get the following simple upper bound:

$$Pr\{e\} \leq \sum_{w} \sqrt{p_{W|H}(w|0)p_{H}(0)p_{W|H}(w|1)p_{H}(1)}$$
(19)

$$= \sqrt{p_H(0)p_H(1)} \sum_{w} \sqrt{p_{W|H}(w|0)p_{W|H}(w|1)}$$
(20)

$$\leq \frac{1}{2} \sum_{w} \sqrt{p_{W|H}(w|0)p_{W|H}(w|1)},\tag{21}$$

where the last inequality follows because for $c, d \ge 0$, we have $\sqrt{cd} \le (c+d)/2$. Now we have to plug in:

$$\tilde{P}_{e} \leq \frac{1}{2} \sum_{w} \sqrt{p_{W|H}(w|0)p_{W|H}(w|1)}$$
(22)

$$= \frac{1}{2} \sum_{w} \sqrt{(1-\epsilon)^{k(w)} \epsilon^{N-k(w)} \epsilon^{k(w)} (1-\epsilon)^{N-k(w)}},$$
 (23)

where we used k(w) to denote the number of values 1 in the sequence w. We find furthermore

$$\tilde{P}_e \leq \frac{1}{2} \sum_{w} \sqrt{\epsilon^N (1-\epsilon)^N} = \frac{1}{2} \sqrt{\epsilon^N (1-\epsilon)^N} \sum_{w} 1$$
(24)

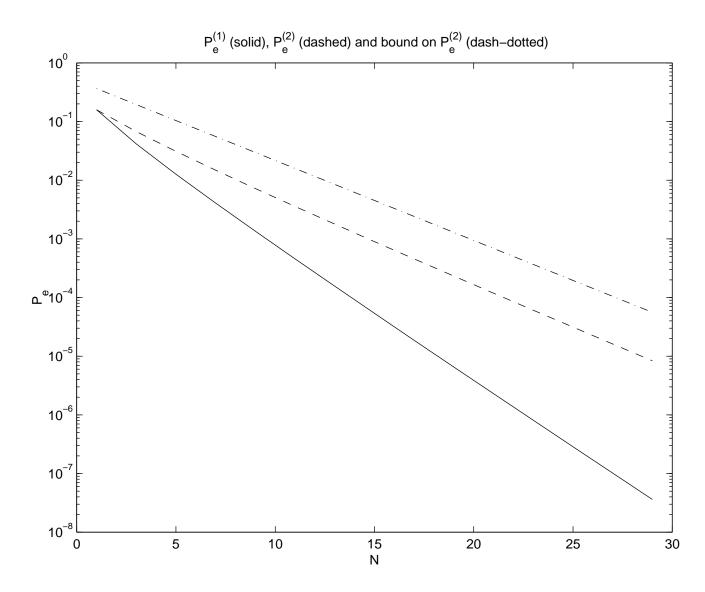
$$= \frac{1}{2}\sqrt{\epsilon^N(1-\epsilon)^N} \ 2^N = \frac{1}{2}\left(2\sqrt{\epsilon(1-\epsilon)}\right)^N.$$
(25)

4. Again, we assume that N is odd; note however that the case when N is even would not add much insight. We used the following matlab program:

```
%
% Principles of Digital Communications, Summer Semester 2001 (Prof. B. Rimoldi)
%
% Solution to Homework 4, Problem 1.(iv)
% Michael Gastpar
%
% Notation: we are using Pe1 for $P_e$ and Pe2 for $\tilde P_e$
%
N = [ 1:2:30 ];
sigma = 1;
```

```
Pe1 = 1/2 * erfc( sqrt(N)/sigma /sqrt(2))
epsilon = 1/2 * erfc( 1/sigma /sqrt(2));
Pe2 = zeros(1, length(N));
for ic = 1:length(N),
  for m = 0:(N(ic)-1)/2,
    Pe2(ic) = Pe2(ic) + prod(N(ic)-m+1:N(ic))/prod(1:m) * (1-epsilon)^m * epsilon^(N(ic)-m);
  end;
end;
end;
Pe2Bhatt = 1/2 * (2*sqrt(epsilon*(1-epsilon))).^N
semilogy( N, Pe1, N, Pe2Bhatt, '--', N, Pe2, '-.');
title('P_e^{(1)} (solid), P_e^{(2)} (dashed) and bound on P_e^{(2)} (dash-dotted)');
xlabel('N');
ylabel('P_e');
```

which gives the following plot for the error probabilities:



Problem 4. (Tighter Union Bhattacharyya Bound: Binary Case)

1. From the definition of the decision region \mathcal{R}_i

$$\mathcal{R}_i = \left\{ y : P_H(i) f_{Y|H}(y|i) \ge P_H(j) f_{Y|H}(y|j) \right\} \quad i \neq j,$$

it is easy to see that in region \mathcal{R}_0

$$P_H(0)f_{Y|H}(y|0) \ge P_H(1)f_{Y|H}(y|1)$$

and vice-versa. Thus we can write

$$Pr\{e\} = P_{H}(0) \int_{\mathcal{R}_{1}} f_{Y|H}(y|0) dy + P_{H}(1) \int_{\mathcal{R}_{0}} f_{Y|H}(y|1) dy$$

$$= \int_{\mathcal{R}_{1}} \min \left\{ P_{H}(0) f_{Y|H}(y|0), P_{H}(1) f_{Y|H}(y|1) \right\} dy$$

$$+ \int_{\mathcal{R}_{0}} \min \left\{ P_{H}(0) f_{Y|H}(y|0), P_{H}(1) f_{Y|H}(y|1) \right\} dy$$

$$= \int_{\mathcal{R}_{0} + \mathcal{R}_{1}} \min \left\{ P_{H}(0) f_{Y|H}(y|0), P_{H}(1) f_{Y|H}(y|1) \right\} dy$$

$$= \int_{y} \min \left\{ P_{H}(0) f_{Y|H}(y|0), P_{H}(1) f_{Y|H}(y|1) \right\} dy.$$

2. To show that for $a, b \ge 0, \sqrt{ab} \le \frac{a+b}{2}$, we proceed as follows. Let m = (a+b)/2 be the midpoint of an imaginary segment of the real line that goes from a to b. Let d = (b-a)/2 be half the distance between a and b. Writing a and b in terms of m and d we obtain: $ab = (m-d)(m+d) = m^2 - d^2 \le m^2$ which is the desired result.

Using this and the hint, namely, for $a, b \ge 0$, $\min(a, b) \le \sqrt{ab}$, we can write

$$Pr\{e\} = \int_{y} \min \left\{ P_{H}(0) f_{Y|H}(y|0), P_{H}(1) f_{Y|H}(y|1) \right\} dy$$

$$\leq \int_{y} \sqrt{P_{H}(0) f_{Y|H}(y|0) P_{H}(1) f_{Y|H}(y|1)} dy$$

$$= \sqrt{P_{H}(0) P_{H}(1)} \int_{y} \sqrt{f_{Y|H}(y|0) f_{Y|H}(y|1)} dy$$

$$\leq \frac{P_{H}(0) + P_{H}(1)}{2} \int_{y} \sqrt{f_{Y|H}(y|0) f_{Y|H}(y|1)} dy$$

$$= \frac{1}{2} \int_{y} \sqrt{f_{Y|H}(y|0) f_{Y|H}(y|1)} dy.$$

3. In class we upper bounded $Pr\{e|H = 0\}$ and $Pr\{e|H = 1\}$ individually instead of upperbounding the almost final result $Pr\{e\} = P_H(0)Pr\{e|H = 0\} + P_H(1)Pr\{e|H = 1\}$, as we did here. More precisely, what we did in class, written differently, is

$$Pr\{e|H = 0\} = \int_{\mathcal{R}_1} f_{Y|H}(y|0)dy$$

= $\int_{\mathcal{R}_1} \min\{f_{Y|H}(y|0), f_{Y|H}(y|1)\} dy$
 $\leq \int_{\mathcal{R}_1} \sqrt{f_{Y|H}(y|0)f_{Y|H}(y|1)}dy$
 $\leq \int_{\mathbb{R}^n} \sqrt{f_{Y|H}(y|0)f_{Y|H}(y|1)}dy$

The last step, which further loosens the bound, is necessary to find a bound of $Pr\{e|H = 0\}$ that does not depend on \mathcal{R}_1 . This "overbounding" is avoided in *(ii)* by finding the bound over the whole $Pr\{e\}$.

Problem 5. (Application of Tight Bhattacharyya Bound)

(i) Using the Tight Bhattacharyya Bound, we get

$$Pr\{e\} \leq \frac{1}{2} \int_{y} \sqrt{f_{Y|H}(y|0) f_{Y|H}(y|1)} dy$$

= $\frac{1}{2} \int_{y} \sqrt{\frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{(y+a)^{2}}{2\sigma^{2}}\right\}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{(y-a)^{2}}{2\sigma^{2}}\right\}} dy$
= $\frac{1}{2} \int_{y} \frac{1}{\sqrt{2\pi\sigma^{2}}} \sqrt{\exp\left\{-\frac{y^{2}+a^{2}}{\sigma^{2}}\right\}} dy$
= $\frac{1}{2} \exp\left\{-\frac{a^{2}}{2\sigma^{2}}\right\} \int_{y} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{y^{2}}{2\sigma^{2}}\right\} dy$
= $\frac{1}{2} \exp\left\{-\frac{a^{2}}{2\sigma^{2}}\right\}.$

(*ii*) The above bound is the same as the one derived in class, which was obtained working specifically with the expression for the Q-function. It is surprising that the *Bhattacharyya Bound*, which applies to arbitrary channels, yields the same result.

Problem 6. (Bhattacharyya Bound for DMCs)

1. Inequality (a) follows from the tight *Bhattacharyya Bound*.

Using the definition of DMC, it is straightforward to see that

$$P(\mathbf{y}|\mathbf{s_0}) = \prod_{i=1}^{n} P(y_i|s_{0i}) \quad \text{and}$$
$$P(\mathbf{y}|\mathbf{s_1}) = \prod_{i=1}^{n} P(y_i|s_{1i}).$$

Inequality (b) follows by substituting the above values in (a).

Equality (c) is obtained by observing that $\sum_{\mathbf{y}}$ is the same as \sum_{y_1,\dots,y_n} (the first one being a vector notation for the sum over all possible y_1,\dots,y_n).

In (c) we see that we want the sum of all possible products. It can also be obtained by summing over each y_i and taking the product of the resulting sum for all y_i . This results in inequality (d). We get equality (e) by writing (d) in a more concise form. When $s_{0i} = s_{1i}$, $\sqrt{P(y|s_{0i})P(y|s_{1i})} = P(y|s_{0i})$ and thus $\sum_{y} \sqrt{P(y|s_{0i})P(y|s_{1i})} = \sum_{y} P(y|s_{0i}) = 1$. This would contribute unity to the product (not really useful!). Thus we are only interested in terms where $s_{0i} \neq s_{1i}$. We form the product of all such sums where $s_{0i} \neq s_{1i}$. We then look out for terms where $s_{0i} = a$ and $s_{1i} = b, a \neq b$ and raise the sum to the appropriate power. (Eg. If we have the product prpqrpqrr, we would write it as $p^3q^2r^4$). Hence equality (f).

2. For a binary input channel, we have only two source alphabets $\mathcal{X} = \{a, b\}$. Thus

$$Pr\{e\} \leq z^{n(a,b)} z^{n(b,a)}$$
$$= z^{n(a,b)+n(b,a)}$$
$$= z^{d_H(\mathbf{s_0},\mathbf{s_1})}$$

3. The value of

(a) For a binary input Gaussian channel,

$$z = \int_{y} \sqrt{f_{Y|X}(y|0) f_{Y|X}(y|1)} dy$$
$$= \exp\left(-\frac{E}{2\sigma^{2}}\right)$$

(b) For the Binary Symmetric Channel (BSC),

$$z = \sqrt{P(y=0|x=0)P(y=0|x=1)} + \sqrt{P(y=1|x=0)P(y=1|x=1)}$$

= $2\sqrt{\delta(1-\delta)}.$

(c) For the Binary Erasure Channel (BEC),

$$z = \sqrt{P(y=0|x=0)P(y=0|x=1)} + \sqrt{P(y=E|x=0)P(y=E|x=1)} + \sqrt{P(y=1|x=0)P(y=1|x=1)} = 0 + \delta + 0 = \delta.$$