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Solution of Homework 5

Problem 1. (QAM with Erasure)

P00 =Pr({N1 ≥ −a} ∩ {N2 ≥ −a})
=Pr({N1 ≤ a})Pr({N2 ≤ a})

=
[
1−Q

(a
σ

)]2
.

By symmetry:

P01 = P03 =Pr({N1 ≤ −(2b− a)} ∩ {N2 ≥ −a})
=Pr({N1 ≥ 2b− a})Pr({N2 ≤ a})

=Q

(
2b− a
σ

)[
1−Q

(a
σ

)]
.

P04 =Pr({N1 ≤ −(2b− a)} ∩ {N2 ≤ −(2b− a)})
=Pr({N1 ≥ 2b− a} ∩ {N2 ≥ 2b− a})

=

[
Q

(
2b− a
σ

)]2
.

P0δ =1− Pr({Y ∈ R0} ∪ {Y ∈ R1} ∪ {Y ∈ R2} ∪ {Y ∈ R3}|s0 was sent)

=1− P00 − P01 − P02 − P03

=1−
[
1−Q

(a
σ

)]2
− 2Q

(
2b− a
σ

)[
1−Q

(a
σ

)]
−
[
Q

(
2b− a
σ

)]2
=1−

[
1−Q

(a
σ

)
+Q

(
2b− a
σ

)]2



Equivalently,

P0δ =Pr({N1 ∈ [a, 2b− a]} ∪ {N2 ∈ [a, 2b− a]})
=Pr(N1 ∈ [a, 2b− a]) + Pr(N1 ∈ [a, 2b− a])− Pr({N1 ∈ [a, 2b− a]} ∩ {N2 ∈ [a, 2b− a]})

=2

[
Q

(
2b− a
σ

)
−Q

(a
σ

)]
−
[
Q

(
2b− a
σ

)
−Q

(a
σ

)]2
,

which gives the same result as before.

Problem 2. (Gaussian Hypothesis testing)

1. (a)

L(Y1, ..., Yn) =
P (Y1, ...YN |H1)

P (Y1, ..., Yn|H0)

= e
|Y−µ0|

2−|Y−µ1|
2

2σ2

= e
2(µ1−µ0)

T Y+||µ0||
2−||µ1||

2

2σ2 .

Taking the logarithm on both sides we obtain the simplified decision rule

(µ1 − µ0)
TY

H0

≶
H1

||µ1||2 − ||µ0||2

2

If we denote a = µ1−µ0 and b = ||µ1||2−||µ0||2 we see that aTY = b characterizes

an n-dimensional hyperplane which passes through µ1+µ0
2

and separates the two

decision regions.

(b) Under H1,

(µ1 − µ0)
TY ∼ N

(
(µ1 − µ0)

Tµ1, σ
2||µ1 − µ0||2

)
Hence we obtain

P (E|H1) = Q

(µ1 − µ0)
Tµ1 −

(
||µ1||2−||µ0||2

2

)
√
σ2||µ1 − µ0||2


= Q

(
||µ1 − µ0||

2σ

)
= Q

(
d

2σ

)
,

where d = ||µ1 − µ0|| is the distance between the mean vectors. Similarly we can

show that P (E|H0) = Q
(
d
2σ

)
. Hence, P (E) = Q

(
d
2σ

)
.
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2. (a)

L(Y1, ..., Yn) =
P (Y1, ..., Yn|H1)

P (Y1, ..., Yn|H0)

=

(
σ0
σ1

)n
e

σ2
1 − σ2

0

2σ2
1σ

2
0

∑n
i=0 Y

2
i


H0

≶
H1

1 .

Taking logarithm and using σ1 > σ0 we obtain the simplified decision rule

n∑
i=1

y2i
H0

≶
H1

2σ2
1σ

2
0

σ2
1 − σ2

0

(
−n log

σ0
σ1

)
=

2nσ2
1σ

2
0

σ2
1 − σ2

0

log

(
σ1
σ0

)
.

The decision boundary is the n-dimensional hyper sphere where the points inside

the sphere belong to H0 whereas the points outside belong to H1.

(b) i. Let define Z = Y 2
1 + Y 2

2 . We first obtain the CDF of Z as follows

FZ(z) = P (Y 2
1 + Y 2

2 ≤ z)

=

∫
Y 2
1 +Y 2

2 ≤z

1

2πσ2
e−

y21+y
2
2

2σ2 dy1dy2

And we apply the following change of variables: y1 = rsin(θ) and y2 = rcos(θ)

( thus, r2 = y21 + y22 ) and obtain:

=

∫ √z
r=0

∫ 2π

θ=0

1

2πσ2
e−

r2

2σ2 |detJ(θ, r)|drdθ

=

∫ √z
r=0

1

2πσ2
e−

r2

2σ2 2πrdr

=

[
−e−

r2

2σ2

]√z
0

= 1− e−
z

2σ2

Taking the derivative we obtain the probability density function fZ(z) = 1
2σ2 e

− z
2σ2 ,

which is an exponential with parameter 1
2σ2 .

ii. For n = 2 and H1, we have

P (E|H1) = P

(
Y 2
1 + Y 2

2 ≥
4σ2

1σ
2
0

σ2
1 − σ2

0

log(
σ1
σ0

)|H1

)

=

∫ 4σ21σ
2
0

σ21−σ
2
0
log(

σ1
σ0

)

0

1

2σ2
1

e
− z

2σ21 dz

= 1− e
− 4σ20
σ21−σ

2
0
log(

σ1
σ0

)
= 1−

(
σ0
σ1

) 4σ20
σ21−σ

2
0
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Similarly, we obtain

P (E|H0) =

∫ ∞
4σ21σ

2
0

σ21−σ
2
0
log

σ1
σ0

1

2σ2
0

e
− z

2σ20 dz

= e
− 4σ21
σ21−σ

2
0
log

σ1
σ0 =

(
σ0
σ1

) 4σ21
σ21−σ

2
0

Let us denote ρ = σ1
σ0

. Then we have :

P (E|H0) = 1−
(

1

ρ

) 4
ρ2−1

, P (E|H1) =

(
1

ρ

) 4ρ2

ρ2−1

and P (E) =
1

2
+

1

2

(1

ρ

) 4ρ2

ρ2−1

−
(

1

ρ

) 4
ρ2−1


iii. Let us denote A(ρ) =

(
1
ρ

) 4ρ2

ρ2−1
and B(ρ) =

(
1
ρ

) 4
ρ2−1

. Using the Hopital rule

we obtain:

lim
ρ→∞

logB(ρ) = lim
ρ→∞

−4 log(ρ)

ρ2 − 1
= 0⇒ lim

ρ→∞
B(ρ) = 1, and lim

ρ→∞
A(ρ) = 04 = 0

Hence

lim
ρ→∞

P (E) = 0.

Problem 3. (Repeat Codes and Bhattacharyya Bound)

1. First, we find the probability mass function of (W1, . . . ,WN) given each of the two

hypotheses:

pW1...WN |H(w1, . . . , wN |0) = Pr{sgn(X1 + Z1) = w1, . . . , sgn(XN + ZN) = wN |H = 0}
= Pr{sgn(X1 + Z1) = w1, . . . , sgn(XN + ZN) = wN |

(X1, . . . , XN) = (1, . . . , 1)} (1)

= Pr{sgn(1 + Z1) = w1, . . . , sgn(1 + ZN) = wN} (2)

= Pr{sgn(1 + Z1) = w1} · . . . · Pr{sgn(1 + ZN) = wN}. (3)

But since the Zi are independent of each other and have the same distribution (or, as

we say more frequently, since the Zi are iid random variables), we can write this also

as

pW1...WN |H(w1, . . . , wN |0) =
N∏
i=1

Pr{sgn(1 + Z) = wi}. (4)
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Notice that the event {Wi = sgn(1 + Z) = 0} has probability zero. Therefore, it is of

no interest to our consideration. This means that the random variables Wi can only

assume values 1 or −1. Suppose that (w1, . . . , wN) contains k values of 1, and thus

(N − k) values of −1. With this definition, we can rewrite

pW1...WN |H(w1, . . . , wN |0) = (Pr{1 + Z ≥ 0})k (Pr{1 + Z ≤ 0})N−k . (5)

Let us introduce the following notation:

ε
def
= Pr{(1 + Z) ≤ 0} = 1−Q

(
− 1

σ

)
= Q

(
1

σ

)
. (6)

Then, we can write

pW1...WN |H(w1, . . . , wN |0) = (1− ε)kεN−k. (7)

Under hypothesis H = 1, we have essentially the same derivation. Let us give only a

few steps, using the same definitions of k (number of ones) and ε as above:

pW1...WN |H(w1, . . . , wN |1) =
N∏
i=1

Pr{sign(−1 + Z) = wi} (8)

= (Pr{−1 + Z ≥ 0})k (Pr{−1 + Z ≤ 0})N−k (9)

= εk(1− ε)N−k (10)

Thus, we see that k is a sufficient statistic.

At this point, we give a simple picture that allows to derive all of this much more

easily: The overall system between X and W may be viewed as a channel with input

1 or −1 and output also 1 or −1. There is a certain probability ε (called transition or

crossover probability) that the channel converts 1 into −1 or vice versa:

1- ε

1- ε

W

-1 -1

  1  1

Xi  i
ε

ε

This particular channel is called the Binary Symmetric Channel. From this figure,

various results can be found easily. For instance, it is clear that if we put N consecu-

tive values 1 onto the channel, the probability of getting, at the output, a particular

sequence (w1, . . . , wN) which contains exactly k values of 1 is simply (1 − ε)kεN−k.
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Similarly, the probability of getting, at the output, any sequence that contains exactly

k values of 1 is (Nk )(1−ε)kεN−k because there are (Nk ) distinct particular sequences with

exactly k ones each, and every one of them has probability (1− ε)kεN−k.

Next, we have to develop the likelihood ratio:

L(w1, . . . , wN) =
pW1...WN |H(w1, . . . , wN |1)

pW1...WN |H(w1, . . . , wN |0)
(11)

=
εk(1− ε)N−k

(1− ε)kεN−k
=

(
ε

1− ε

)2k−N

. (12)

In terms of the loglikelihood ratio, we find

logL(w1, . . . , wN) = (2k −N) log

(
ε

1− ε

)
1

≷
0

0. (13)

Since ε < 1/2, we know that log
(

ε
1−ε

)
< 0, and thus, when we divide by this term, the

direction of the inequality is changed. Using this, the decision rule can be written as

k
1

≶
0

N

2
. (14)

That is, the best decision rule is simply majority voting: if the majority of the received

values is 1, we decide for hypothesis H = 0 (i.e. transmitted value was 1); on the other

hand, if the majority of the received values is −1, we decide for hypothesis H = 1 (i.e.

transmitted value was −1).

2. Let us assume that N is odd. Then,

Pe(0) = Pr{ there are less than N/2 ones in the received sequence |
N ones were transmitted } (15)

=

(N−1)/2∑
m=0

(Nm)(1− ε)mεN−m (16)

By the symmetry of the problem, Pe(1) turns out to be the exact same expression,

thus

Pe =

(N−1)/2∑
m=0

(Nm)(1− ε)mεN−m (17)

In case N is even, we introduce a slight asymmetry because the term for N/2 has to

be assigned to either H = 0 or H = 1 (cannot be assigned to both).

Clearly, this sum cannot be evaluated explicitly. There are various techniques to bound

it. In this homework, we consider the Bhattacharyya bound as encountered in class.
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3. In class, you have seen the following derivation of the Bhattacharyya bound. For the

optimal decision rule, we can write the probability of error as follows:

Pe =
∑
w

min
w

{
pW |H(w|0)pH(0), pW |H(w|1)pH(1)

}
, (18)

where the sum is over all possible sequences w of length N . In our case, since wi ∈
{−1, 1}, we have w ∈ {−1, 1}N , and thus there are 2N terms in the sum. But since for

a, b ≥ 0, we have that min a, b ≤
√
ab, we get the following simple upper bound:

Pr{e} ≤
∑
w

√
pW |H(w|0)pH(0)pW |H(w|1)pH(1) (19)

=
√
pH(0)pH(1)

∑
w

√
pW |H(w|0)pW |H(w|1) (20)

≤ 1

2

∑
w

√
pW |H(w|0)pW |H(w|1), (21)

where the last inequality follows because for c, d ≥ 0, we have
√
cd ≤ (c + d)/2. Now

we have to plug in:

P̃e ≤
1

2

∑
w

√
pW |H(w|0)pW |H(w|1) (22)

=
1

2

∑
w

√
(1− ε)k(w)εN−k(w) εk(w)(1− ε)N−k(w), (23)

where we used k(w) to denote the number of values 1 in the sequence w. We find

furthermore

P̃e ≤
1

2

∑
w

√
εN(1− ε)N =

1

2

√
εN(1− ε)N

∑
w

1 (24)

=
1

2

√
εN(1− ε)N 2N =

1

2

(
2
√
ε(1− ε)

)N
. (25)

4. Again, we assume that N is odd; note however that the case when N is even would

not add much insight. We used the following matlab program:

%

% Principles of Digital Communications, Summer Semester 2001 (Prof. B. Rimoldi)

%

% Solution to Homework 4, Problem 1.(iv)

% Michael Gastpar

%

% Notation: we are using Pe1 for $P_e$ and Pe2 for $\tilde P_e$

%

N = [ 1:2:30 ];

sigma = 1;
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Pe1 = 1/2 * erfc( sqrt(N)/sigma /sqrt(2))

epsilon = 1/2 * erfc( 1/sigma /sqrt(2));

Pe2 = zeros(1, length(N));

for ic = 1:length(N),

for m = 0:(N(ic)-1)/2,

Pe2(ic) = Pe2(ic) + prod(N(ic)-m+1:N(ic))/prod(1:m) * (1-epsilon)^m * epsilon^(N(ic)-m);

end;

end;

Pe2Bhatt = 1/2 * (2*sqrt(epsilon*(1-epsilon))).^N

semilogy( N, Pe1, N, Pe2Bhatt, ’--’, N, Pe2, ’-.’);

title(’P_e^{(1)} (solid), P_e^{(2)} (dashed) and bound on P_e^{(2)} (dash-dotted)’);

xlabel(’N’);

ylabel(’P_e’);

which gives the following plot for the error probabilities:
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Problem 4. (Tighter Union Bhattacharyya Bound: Binary Case)

1. From the definition of the decision region Ri

Ri =
{
y : PH(i)fY |H(y|i) ≥ PH(j)fY |H(y|j)

}
i 6= j,

it is easy to see that in region R0

PH(0)fY |H(y|0) ≥ PH(1)fY |H(y|1)
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and vice-versa. Thus we can write

Pr{e} = PH(0)

∫
R1

fY |H(y|0)dy + PH(1)

∫
R0

fY |H(y|1)dy

=

∫
R1

min
{
PH(0)fY |H(y|0), PH(1)fY |H(y|1)

}
dy

+

∫
R0

min
{
PH(0)fY |H(y|0), PH(1)fY |H(y|1)

}
dy

=

∫
R0+R1

min
{
PH(0)fY |H(y|0), PH(1)fY |H(y|1)

}
dy

=

∫
y

min
{
PH(0)fY |H(y|0), PH(1)fY |H(y|1)

}
dy.

2. To show that for a, b ≥ 0,
√
ab ≤ a+b

2
, we proceed as follows. Let m = (a + b)/2

be the midpoint of an imaginary segment of the real line that goes from a to b. Let

d = (b− a)/2 be half the distance between a and b. Writing a and b in terms of m and

d we obtain: ab = (m− d)(m+ d) = m2 − d2 ≤ m2 which is the desired result.

Using this and the hint, namely, for a, b ≥ 0, min(a, b) ≤
√
ab, we can write

Pr{e} =

∫
y

min
{
PH(0)fY |H(y|0), PH(1)fY |H(y|1)

}
dy

≤
∫
y

√
PH(0)fY |H(y|0)PH(1)fY |H(y|1)dy

=
√
PH(0)PH(1)

∫
y

√
fY |H(y|0)fY |H(y|1)dy

≤ PH(0) + PH(1)

2

∫
y

√
fY |H(y|0)fY |H(y|1)dy

=
1

2

∫
y

√
fY |H(y|0)fY |H(y|1)dy.

3. In class we upper bounded Pr{e|H = 0} and Pr{e|H = 1} individually instead of

upperbounding the almost final result Pr{e} = PH(0)Pr{e|H = 0}+PH(1)Pr{e|H =

1}, as we did here. More precisely, what we did in class, written differently, is

Pr{e|H = 0} =

∫
R1

fY |H(y|0)dy

=

∫
R1

min
{
fY |H(y|0), fY |H(y|1)

}
dy

≤
∫
R1

√
fY |H(y|0)fY |H(y|1)dy

≤
∫
Rn

√
fY |H(y|0)fY |H(y|1)dy
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The last step, which further loosens the bound, is necessary to find a bound of

Pr{e|H = 0} that does not depend on R1. This “overbounding” is avoided in (ii)

by finding the bound over the whole Pr{e}.

Problem 5. (Application of Tight Bhattacharyya Bound)

(i) Using the Tight Bhattacharyya Bound, we get

Pr{e} ≤ 1

2

∫
y

√
fY |H(y|0)fY |H(y|1)dy

=
1

2

∫
y

√
1√

2πσ2
exp

{
−(y + a)2

2σ2

}
1√

2πσ2
exp

{
−(y − a)2

2σ2

}
dy

=
1

2

∫
y

1√
2πσ2

√
exp

{
−y

2 + a2

σ2

}
dy

=
1

2
exp

{
− a2

2σ2

}∫
y

1√
2πσ2

exp

{
− y2

2σ2

}
dy

=
1

2
exp

{
− a2

2σ2

}
.

(ii) The above bound is the same as the one derived in class, which was obtained working

specifically with the expression for the Q-function. It is surprising that the Bhattacharyya

Bound, which applies to arbitrary channels, yields the same result.

Problem 6. (Bhattacharyya Bound for DMCs)

1. Inequality (a) follows from the tight Bhattacharyya Bound.

Using the definition of DMC, it is straightforward to see that

P (y|s0) =
n∏
i=1

P (yi|s0i) and

P (y|s1) =
n∏
i=1

P (yi|s1i).

Inequality (b) follows by substituting the above values in (a).

Equality (c) is obtained by observing that
∑

y is the same as
∑

y1,...,yn
(the first one

being a vector notation for the sum over all possible y1, . . . , yn).

In (c) we see that we want the sum of all possible products. It can also be obtained

by summing over each yi and taking the product of the resulting sum for all yi. This

results in inequality (d). We get equality (e) by writing (d) in a more concise form.
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When s0i = s1i,
√
P (y|s0i)P (y|s1i) = P (y|s0i) and thus

∑
y

√
P (y|s0i)P (y|s1i) =∑

y P (y|s0i) = 1. This would contribute unity to the product (not really useful!).

Thus we are only interested in terms where s0i 6= s1i. We form the product of all such

sums where s0i 6= s1i. We then look out for terms where s0i = a and s1i = b, a 6= b and

raise the sum to the appropriate power. (Eg. If we have the product prpqrpqrr, we

would write it as p3q2r4). Hence equality (f).

2. For a binary input channel, we have only two source alphabets X = {a, b}. Thus

Pr{e} ≤ zn(a,b)zn(b,a)

= zn(a,b)+n(b,a)

= zdH(s0,s1)

3. The value of

(a) For a binary input Gaussian channel,

z =

∫
y

√
fY |X(y|0)fY |X(y|1)dy

= exp

(
− E

2σ2

)
(b) For the Binary Symmetric Channel (BSC),

z =
√
P (y = 0|x = 0)P (y = 0|x = 1) +

√
P (y = 1|x = 0)P (y = 1|x = 1)

= 2
√
δ(1− δ).

(c) For the Binary Erasure Channel (BEC),

z =
√
P (y = 0|x = 0)P (y = 0|x = 1) +

√
P (y = E|x = 0)P (y = E|x = 1)

+
√
P (y = 1|x = 0)P (y = 1|x = 1)

= 0 + δ + 0

= δ.
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