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Solution of Homework 4

Problem 1. (Fisher-Neyman Factorization Theorem)

The pdf fY |H is a non-negative function. Hence without loss of generality we may assume

that both gi and h are non-negative.

1. The MAP decision rule can always be written as

Ĥ(y) = arg max
i
fY |H(y|i)PH(i)

= arg max
i
gi(T (y))h(y)PH(i)

= arg max
i
gi(T (y))PH(i)

The last step is valid because h(y) is non-negative constant which is independent of i

and thus does not give any further information for our decision.

2. Recall, that if Y is a random variable with probability density function fY (y) and B
is an event, then

fY |Y ∈B =
fY (y)1B(y)∫
B fY (y)dy

, (1)

where 1B(y) is the indicator function,

1B(y) =

{
1 if y ∈ B
0 otherwise.

Now, consider our original problem where T (Y ) is a function of Y . Note that for every

t, we can define the event Bt = {y : T (y) = t}. Using (1), we have

fY |H,T (Y )(y|i, t) =
fY |H(y|i)1Bt(y)∫
Bt fY |H(y|i)dy

.



If fY |H(y|i) = gi(T (y))h(y), then

fY |H,T (Y )(y|i, t) =
gi(T (y))h(y)1Bt(y)∫
Bt gi(T (y))h(y)dy

=
gi(t)h(y)1Bt(y)

gi(t)
∫
Bt h(y)dy

=
h(y)1Bt(y)∫
Bt h(y)dy

.

Hence, we see that fY |H,T (Y )(y|i, t) does not depend on i so H → T (Y )→ Y .

In the following we verify the above results for two examples.

1. (Example 1) Note that PYk|H(1|i) = pi, PYk|H(0|i) = 1− pi and

PY1,...,Yn|H(y1, . . . , yn|i) = PY1|H(y1|i) . . . PYn|i(yn|i).

Thus, we have

PY1,...,Yn|H(y1, . . . , yn|i) = pti(1− pi)
(n−t),

where t =
∑

k yk.

Choosing gi(t) = pti(1− pi)
(n−t) and h(y) = 1, we see that PY1,...,Yn|H(y1, . . . , yn|i) fulfills

the condition in the question.

2. (Example 2) We have fYk|H(y|i) = 1√
2π
e−

(y−mi)
2

2 and

fY1,...,Yn|H(y1, . . . , yn|i) =
n∏
k=1

fYk|H(yk|i)

since Y1, . . . , Yn are independent. Thus,

fY1,...,Yn|H(y1, . . . , yn|i) =
n∏
k=1

1√
2π
e−

(yk−mi)
2

2

=
1

(2π)
n
2

e−
∑n

k=1
(yk−mi)

2

2

=
1

(2π)
n
2

e−
∑n

k=1 y2k
2 enmi(

1
n

∑n
k=1 yk −

mi
2
).

Choosing gi(t) = enmi(t−
mi
2
) and h(y1, . . . , yn) = 1

(2π)
n
2
e−

∑n
k=1 y2k

2 , we see that

fY1,...,Yn|H(y1, . . . .yn|i) = gi(T (y1, . . . , yn))h(y1, . . . yn)

hence the condition in the question is fulfilled.
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Problem 2. (Q-Function on Regions)

1. One can see that the event {X ∈ Region} only depends on the first component X1.

Hence, we have

Pr
{
X ∈ Region

}
= Pr

{
{X1 ≥ −2} ∩ {X1 ≤ 1}

}
= 1− Pr

{
{X1 < −2} ∪ {X1 > 1}

}
= 1−Q(

2

σ
)−Q(

1

σ
),

where the last equality is true because {X1 < −2} and {X1 > 1} are disjoint events.

2. Since X1 and X2 are independent and have the same variance, rotating the vector

X by any angle around the origin does not change its distribution. Equivalently, we

can rotate the square region in Figure (b) by 45 degrees, and the probability of X

being in the rotated region is the same as for the original region. The new region is a

square whose edges are parallel to the axes of the coordinate system. The points where

the edges of the square intersect the axes are (
√

2, 0), (−
√

2, 0), (0,
√

2) and (0,−
√

2).

Hence,

Pr
{
X ∈ Region

}
= Pr

{
{−
√

2 ≤ X1 ≤
√

2} ∩ {−
√

2 ≤ X2 ≤
√

2}
}

(1)
= Pr

{
{−
√

2 ≤ X1 ≤
√

2}
}2

=
[
1− Pr

{
{X1 ≤ −

√
2} ∪ {X1 ≥

√
2}
}]2

=
[
1− 2Q(

√
2

σ
)
]2
,

where (1) holds because X1 and X2 are independent and identically distributed.

3. We solve this part using two different ways:

(a) First Solution: From the same argument as in previous part, we can rotate X

such that one of its components, say X1, is perpendicular to the straight line that

delimits the shaded region in Figure (c). Then, we need to know the shortest

distance d of that line to the origin (the length of a segment that starts at (0, 0)

and is perpendicular to the line). Using standard trigonometric techniques, one

finds that this length is d = 2√
5

(An even more straight forward way to find d is to

use the fact that corresponding sides of similar triangles have length in the same

ratio so d
1

= 2√
5
). Then, it follows that

Pr
{
X ∈ Region

}
= Pr

{
X1 ≥

2√
5

}
= Q(

2√
5σ

).
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(b) Second Solution: We are looking for the probability that X2 ≥ 1 − 1
2
X1, i.e.,

the probability that Z , X2 + 1
2
X1 − 1 ≥ 0. But Z ∼ N (−1, 5

4
σ2). Hence,

Pr
{
X ∈ Region

}
= Pr

{
Z ≥ 0

}
= Q( 2√

5σ
).

Problem 3. Comparison of 16-PAM and 16-QAM

1. 16-PAM. Denote the additive white Gaussian noise process by Z. Thus, Z is zero-

mean Gaussian of variance σ2, and the observation Y is also Gaussian of variance σ2,

but with mean corresponding to the particular signal point that is being transmitted.

Label the signal points from left to right by 1, . . . , 16. Then,

Pr{e|H = 1} = Pr{Y ≥ −7a | H = 1} = Pr{Z ≥ a

2
}

= Pr{Z
σ
≥ a

2σ
} = Q

( a
2σ

)
(2)

By symmetry, Pr{e|H = 1} = Pr{e|H = 16}. Moreover,

Pr{e|H = 2} = Pr{Y ≤ −7a or Y ≥ −6a | H = 2} (3)

= Pr{Z ≤ −a
2

or Z ≥ a

2
} (a)

= 2Pr{Z ≥ a

2
} (4)

= 2Q
( a

2σ

)
. (5)

The following schematic drawing should illustrate how we obtained equality in (a):
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Again, by symmetry, Pr{e|H = i} = Pr{e|H = 2}, for i = 3, . . . , 15. Putting things

together, we obtain

Pr{e} =
16∑
i=1

pH(i)Pr{e|H = i} =
16∑
i=1

1

16
Pr{e|H = i} (6)

=
1

16

(
2 ·Q

( a
2σ

)
+ 14 · 2Q

( a
2σ

))
(7)

=
15

8
Q
( a

2σ

)
. (8)
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16-QAM. Denote the additive white Gaussian noise process in the x-direction by Z1

and in the y-direction by Z2. In our setup, both Z1 and Z2 are zero-mean Gaussian

of variance σ2. Label the signal points from left to right, top to bottom by 1, . . . , 16.

Then, for the four corner points, we find

Pr{e|H = 1} = Pr{Y1 ≥ −b or Y2 ≤ b | H = 1}. (9)

However, the connection with “or” does not allow to decompose into two disjoint

events. We may rewrite as follows to obtain a connection with “and”:

Pr{e|H = 1} = 1− Pr{Y1 ≤ −b and Y2 ≥ b | H = 1} (10)

= 1− Pr{Y1 ≤ −b | H = 1} · Pr{Y2 ≥ b | H = 1}. (11)

However, a simple way not to get trapped in this kind of logic is to consider the

probability of correct decision rather than the probability of error. We will use this

approach to derive the solution to the problem. Thus,

Pr{correct|H = 1} = Pr{Y1 ≤ −b and Y2 ≥ b | H = 1} (12)

= Pr{Y1 ≤ −b | H = 1} · Pr{Y2 ≥ b | H = 1} (13)

= Pr{Z1 ≤
b

2
} · Pr{Z2 ≥

−b
2
} (14)

=

(
1−Q

(
b

2σ

))
Q

(
− b

2σ

)
(15)

=

(
1−Q

(
b

2σ

))2

. (16)

For the points on the edges (i.e. numbers 2, 3, 5, 8, 9, 12, 14, 15), we find similarly

Pr{correct|H = 2} = Pr{−b ≤ Y1 ≤ 0 and Y2 ≥ b | H = 2} (17)

= Pr{− b
2
≤ Z1 ≤

b

2
} · Pr{Z2 ≥ −

b

2
}, (18)

where

Pr{− b
2
≤ Z1 ≤

b

2
} = 1− Pr{Z1 ≤ −

b

2
or Z1 ≥

b

2
} (19)

= 1− 2Pr{Z1 ≥
b

2
} (20)

= 1− 2Q

(
b

2σ

)
, (21)

thus,

Pr{correct|H = 2} =

(
1− 2Q

(
b

2σ

))(
1−Q

(
b

2σ

))
. (22)
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Finally, for the four points in the middle, we obtain

Pr{correct|H = 6} = Pr{−b ≤ Y1 ≤ 0 and 0 ≤ Y2 ≤ b | H = 6} (23)

= Pr{− b
2
≤ Z1 ≤

b

2
} · Pr{− b

2
≤ Z2 ≤

b

2
} (24)

=

(
1− 2Q

(
b

2σ

))2

. (25)

Putting things together, we find

Pr{correct} =
16∑
i=1

pH(i)Pr{correct|H = i} =
16∑
i=1

1

16
Pr{correct|H = i} (26)

=
1

16

[
4 ·
(

1−Q
(
b

2σ

))2

+ 8 ·
(

1−Q
(
b

2σ

))(
1− 2Q

(
b

2σ

))
+4 ·

(
1− 2Q

(
b

2σ

))(
1− 2Q

(
b

2σ

))]
(27)

= 1− 3Q

(
b

2σ

)
+

9

4

(
Q

(
b

2σ

))2

. (28)

From here, we find Pr{e} = 1− Pr{correct}, thus

Pr{e} = 3Q

(
b

2σ

)
− 9

4

(
Q

(
b

2σ

))2

. (29)

2. 16-PAM. By symmetry, we only consider the positive signals to find

Es = 2
1

16

((a
2

)2
+

(
3a

2

)2

+ . . .+

(
15a

2

)2
)

(30)

=
a2

32

(
1 + 32 + 52 + . . .+ 152

)
=

85a2

4
. (31)

16-QAM. By symmetry, we only consider the positive quadrant to find

Es = 4
1

16

((
b

2

)2

+

(
b

2

)2

+

(
3b

2

)2

+

(
3b

2

)2

+ 2

((
b

2

)2

+

(
3b

2

)2
))

(32)

=
b2

16
(1 + 1 + 9 + 9 + 2(1 + 9)) =

5b2

2
. (33)

3. 16-PAM. We find a/2 =
√
Es/85, thus

Pr{e} =
15

8
Q

(√
Es

85σ2

)
. (34)
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16-QAM. We find b/2 =
√
Es/10, thus

Pr{e} = 3Q

(√
Es

10σ2

)
− 9

4
Q2

(√
Es

10σ2

)
. (35)

To plot these functions, we use matlab. Unfortunately, matlab does not feature the

Q-function directly; instead, there is

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt. (36)

By a change of variables, it is easy to show that

Q(x) =
1

2
erfc

(
x√
2

)
. (37)

The following matlab program does the job:

%

% Principles of Digital Communications, Summer Semester 2001 (Prof. B. Rimoldi)

%

% Michael Gastpar

%

logES = [ -2:0.1: 3];

ES = 10.^logES; % this is E_s/\sigma^2

PrePAM = 15/8 * 1/2*erfc( sqrt(ES/85) /sqrt(2)); PreQAM = 3

* 1/2*erfc( sqrt(ES/10) /sqrt(2))

- 9/4 * 1/2*erfc( sqrt(ES/10) /sqrt(2)).^2;

loglog(ES, PrePAM, ’--’, ES, PreQAM); title(’Comparison of 16-PAM

(--) and 16-QAM’); xlabel(’E_s/\sigma^2’); ylabel(’Pr\{e\}’);

Problem 4. (Antenna array)

1. Let Y = [Y1, Y2]
T . Then

fY|H0(y) =
1

2πσ1σ2
exp

[
−(y1 − A)2

2σ2
1

− (y2 − A)2

2σ2
2

]
fY|H1(y) =

1

2πσ1σ2
exp

[
−(y1 + A)2

2σ2
1

− (y2 + A)2

2σ2
2

]
.

The MAP decision rule is

fY|H0(y)

fY|H1(y)

Ĥ0

R

Ĥ1

PH(1)

PH(0)
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−25

10
−20

10
−15

10
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10
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10
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Comparison of 16−PAM (−−) and 16−QAM

E
s
/σ2

P
r{

e}

or equivalently,

LLR(y)
Ĥ0

R

Ĥ1

ln

[
PH(1)

PH(0)

]
where LLR is the log-likelihood ratio. In this particular case the optimal decision rule
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is

ln

[
fY|H0(y)

fY|H1(y)

] Ĥ0

R

Ĥ1

ln

[
PH(1)

PH(0)

]
or equivalently,

2Ay1
σ2
1

+
2Ay2
σ2
2

Ĥ0

R

Ĥ1

0 or equivalently,

σ2
2y1 + σ2

1y2

Ĥ0

R

Ĥ1

0

2. When σ1 = 2σ2, the decision rule becomes

σ2
2y1 + 4σ2

2y2

Ĥ0

R

Ĥ1

0 or equivalently,

y2

Ĥ0

R

Ĥ1

−y1
4
.

The decision regions are sketched below.

y1

y2

−A

A

−A

Ĥ = 0

Ĥ = 1

y2 = −y1/4

A

3. We work out two solutions. The first solution (the longer one) consists of finding the

probability that Y = [Y1, Y2]
T ∈ R0 when H = 1.
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y1

y2

A

−A

A

Ĥ = 1

Ĥ = 0

φ2

φ1

y2 = −σ2
2

σ2
1
y1

−A

d

θ

The projection of noise along φ1 is z1 sin θ + z2 cos θ where tan θ = σ2
2/σ

2
1. The noise

variance along φ1 is σ2
φ1

= (sin2 θ)σ2
1 + (cos2 θ)σ2

2. Thus the probability of error is

Pr(error) =
1

2
Pr(error|H0) +

1

2
Pr(error|H1)

= Pr(error|H1)

= Q

(
d

σφ1

)
. (38)

A little calculation shows that d =
√

2A cos(π/4− θ). We thus have

d

σφ1
=

√
2A{cos(π/4) cos θ + sin(π/4) sin θ}√

(sin2 θ)σ2
1 + (cos2 θ)σ2

2

=
A(1 + tan θ)√

1 + tan2 θ
.

Substituting tan θ = σ2
2/σ

2
1 in the above expression, we have

d

σφ1
= A

√
1

σ2
1

+
1

σ2
2

and consequently

Pr(error) = Q

(
d

σφ1

)
= Q

(
A

√
1

σ2
1

+
1

σ2
2

)
.

The second solution consists of finding the probability that σ2
2Y1 + σ2

1Y2 > 0 when

H = 1. But when H = 1, σ2
2Y1 + σ2

1Y2 = σ2
2(−A + Z1) + σ2

1(−A + Z2). We see
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immediately that this ∼ N (−A(σ2
2 + σ2

1), (σ4
2σ

2
1 + σ4

1σ
2
2)). Hence,

Pr{error} = Pr{error|H = 1}

= Q

(
A(σ2

2 + σ2
1)√

σ4
2σ

2
1 + σ4

1σ
2
2

)

= Q

(
A

√
1

σ2
1

+
1

σ2
2

)
.

Problem 5. (Sufficient Statistics)

1. We have

f(Y1,...,Yn)|H(y1, . . . , yn|0) =
n∏
i=1

fYi|H(yi|0)

=

(
1

4

)n−∑n
i=1 yi

(
3

4

)∑n
i=1 yi

=

(
1

4

)n−T (y1,...,yn)(3

4

)n−T (y1,...,yn)
and similarly

f(Y1,...,Yn)|H(y1, . . . , yn|1) =

(
1

4

)∑
yi (3

4

)n−∑ yi

=

(
1

4

)T (y1,...,yn)(3

4

)T (y1,...,yn)
As we see above, the pdf fY1,...,Yn|H(·|·) is only a function of T (y1, . . . , yn). So T (y1, . . . , yn)

has all the necessary information of (Y1, . . . , Yn) to predict H.

2. We have

fY1,...,Yn|H(y1, . . . , yn|H) =
n∏
i=1

fYi|H(yi|H)

= (1−H)
∑n

i=1 yiHn = (1−H)T (y1,...,yn)Hn

So again the probability f(yi, . . . , yn|H) is only dependent on T (y1, . . . , yn) and we can

proceed as in part (1).

3. (a) We can simply check that when H = 0, LH = 1 and the equality holds. Similarly,

when H = 1,

f(y1, y2, . . . , yn|H) = f(y1, y2, . . . , yn|0)L(y1, y2, . . . , yn) = f(y1, y2, . . . , yn|0)× f(y1, y2, . . . , yn|1)

f(y1, y2, . . . , yn|0)
= f(y1, y2, . . . , yn|1).

Hence the equality holds for both cases.
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(b) We see that f(y1, y2, . . . , yn|0) is a function of (y1, y2, . . . , yn) which does not

depend on H. The other part, L(y1, y2, . . . , yn)H , is a function of H and L. Hence

it depends on (y1, y2, . . . , yn) through L. Using Fischer-Neyman facctorization we

obtain that L is a sufficient statistics.

(c) We know that MAP rule, which uses the likelihood ratio, is the optimal decision

rule. this implies that it uses all of the information in the observation to decrease

the error probability. The previous part shows that all of the relevant information

about H is contained in L. Hence the MAP decision rule must depend on L.
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