
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Principles of Digital Communications: Assignment date: March 7, 2012

Summer Semester 2012 Due date: March 14, 2012

Homework 4

Project: Form groups of 2 up to 4 people for the project. Send the names of the group

members to saeid.haghighatshoar@epfl.ch by latest Wednesday 14th March.

Reading Part for the next week: Error Probability (Section 2.6) and Summary (Sec-

tion 2.7). Read also the Definitions, Theorems, and Lemmas of the appendix Facts About

Matrices (Appendix 2.A).

Problem 1. (Fisher-Neyman Factorization Theorem)

Consider the hypothesis testing problem where the hypothesis is H ∈ {0, 1, . . . ,m − 1},
the observable is Y , and T (Y ) is a function of the observable. Let fY |H(y|i) be given for

all i ∈ {0, 1, . . . ,m − 1}. Suppose that there are functions g1, g2, . . . , gm−1 so that for each

i ∈ {0, 1, . . . ,m− 1} one can write

fY |H(y|i) = gi(T (y))h(y). (1)

1. Show that when the above conditions are satisfied, a MAP decision depends on the

observable Y only through T (Y ). In other words, Y itself is not necessary.(Hint: Work

directly with the definition of a MAP decision rule.)

2. Show that T (Y ) is a sufficient statistic, that is H → T (Y ) → Y . (Hint: Start by ob-

serving the following fact: Given a random variable Y with probability density function

fY (y) and given an arbitrary event B, we have

fY |Y ∈B =
fY (y)1B(y)∫
B fY (y)dy

. (2)

Proceed by defining B to be the event B = {y : T (y) = t} and make use of (2) applied

to fY |H(y|i) to prove that fY |H,T (Y )(y|i, t) is independent of i.)

For the following two examples, verify that condition (1) above is satisfied. You can then

immediately conclude from part (1) and (2) above that T (Y ) is a sufficient statistic.



1. (Example 1) Let Y = (Y1, Y2, . . . , Yn), Yk ∈ {0, 1}, be an independent and identically

distributed (i.i.d) sequence of coin tosses such that PYk|H(1|i) = pi. Show that the func-

tion T (y1, y2, . . . , yn) =
∑n

k=1 yk fulfills the condition expressed in equation (1).(Notice

that T (y1, y2, . . . , yn) is the number of 1’s in y1, y2, . . . , yn.)

2. (Example 2) Under hypothesis H = i, let the observable Yk be Gaussian distributed

with mean mi and variance 1; that is

fYk|H(y|i) =
1√
2π
e−

(y−mi)
2

2 ,

and Y1, Y2, . . . , Yn be independently drawn according to this distribution. Show that the

sample mean T (y1, y2, . . . , yn) = 1
n

∑n
k=1 yk fulfills the condition expressed in equation

(1).

Problem 2. (Q-Function on Regions) [Wozencraft and Jacobs]

Let X ∼ N (0, σ2I2). For each of the three figures below, express the probability that X lies

in the shaded region. You may use the Q-function when appropriate.
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Problem 3. (16-PAM versus 16-QAM)

The following two signal constellations are used to communicate across an additive white

Gaussian noise channel. Let the noise variance be σ2.
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Each point represents a signal si for some i. Assume each signal is used with the same

probability.

1. For each signal constellation, compute the average probability of error, Pe, as a function

of the parameters a and b, respectively.

2. For each signal constellation, compute the average energy per symbol, Es, as a function

of the parameters a and b, respectively:

Es =
16∑
i=1

PH(i) ‖ si ‖2 (3)

3. Plot Pe versus Es for both signal constellations and comment.

Problem 4. (Antenna Array)

The following problem relates to the design of multi-antenna systems. The situation that

we have in mind is one where one of two signals is transmitted over a Gaussian channel

and is received through two different antennas. We shall assume that the noises at the two

terminals are independent but not necessarily of equal variance. You are asked to design a

receiver for this situation, and to assess its performance. This situation is made more precise

as follows:

Consider the binary equiprobable hypothesis testing problem:

H = 0 : Y1 = A+ Z1, Y2 = A+ Z2

H = 1 : Y1 = −A+ Z1, Y2 = −A+ Z2,

where Z1, Z2 are independent Gaussian random variables with different variances σ2
1 6= σ2

2,

that is, Z1 ∼ N (0, σ2
1) and Z2 ∼ N (0, σ2

2). A > 0 is a constant.

1. Show that the decision rule that minimizes the probability of error (based on the

observable Y1 and Y2) can be stated as

σ2
2y1 + σ2

1y2
0

≷
1

0.

2. Draw the decision regions in the (Y1, Y2) plane for the special case where σ1 = 2σ2.

3. Evaluate the probability of the error for the optimal detector as a function of σ2
1, σ2

2

and A.

Problem 5. (Sufficient Statistics)

This exercise intends to elaborate more on the intuitive meaning of ”sufficient statistic”.

As stated in the notes, let H be the hidden hypothesis that we want to discover. We are
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given the observable Y and our objective is to use Y to predict the value of H. However,

sometimes the observable Y has some redundant information that is not really needed to

predict H. More precisely, there is a function T (Y ) such that with T (Y ) we can do the same

kind of prediction as with Y .

1. Let H ∈ {0, 1} with PH(0) = PH(1) = 1
2
. Also, define the random variable Y ∈ {0, 1}

with the following law:

fY |H(y|0) =

{
1
4
, y = 0

3
4
, y = 1.

and

fY |H(y|1) =

{
3
4
, y = 0

1
4
, y = 1.

Now, suppose that we observe n i.i.d. samples (Y1, ..., Yn) of Y . Show that T (y1, ..., yn) =

y1+ ...+yn is a sufficient statistic for H. Hint: try to write the quantity f(Y1,...,Yn)|H(·|·)
in terms of T (y1, ..., yn).

2. Let Y1, ..., Yn be i.i.d. samples from the geometric distribution with parameter H ∈
(0, 1). In other words, P (Yi = k) = (1 − H)kH for k = 0, 1, . . . . Show that

T (y1, . . . , yn) = y1 + · · ·+ yn is a sufficient statistic for predicting H.

3. Suppose that we have a binary hypothesis testing in whichH ∈ {0, 1} and (Y1, Y2, . . . , Yn)

is the observed random vector. Also assume that under hypothesis H the probability

distribution of the observation is f(y1, y2, . . . , yn|H), H ∈ {0, 1}.

(a) Show that we can write f(y1, y2, . . . , yn|H) as follows:

f(y1, y2, . . . , yn|H) = f(y1, y2, . . . , yn|0)L(y1, y2, . . . , yn)H ,

where L(y1, y2, . . . , yn) = f(y1,y2,...,yn|1)
f(y1,y2,...,yn|0) is the likelihood ratio.

(b) Use Fischer-Neyman factorization theorem to show that L(y1, y2, . . . , yn) is a suf-

ficient statistics.

(c) Using the result above, argue that why the MAP decision rule just depends on

the likelihood ratio and why other details of the probability distributions are not

important.

4


