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School of Computer and Communication Sciences

Principles of Digital Communications: Assignment date: Mar 28, 2012

Summer Semester 2012 Due date: Apr 4, 2012

Solution of Homework 7

Problem 1. (Non-coherent Detection)

1. We simply find the conditional density of r0, ..., rN−1 under the two hypotheses and

derive the likelihood ratio.

For H0, with pure noise assumption we have :

P (r0, ..., rN−1|H0) =
1

(2πσ2)N/2
exp

(
−
∑N−1

i=0 r2i
2σ2

)

And for H1 we have :

P (r0, ..., rN1|H1) =
1

(2πσ2)N/2
exp

(
− 1

2σ2

N−1∑
i=0

(ri − A cos(2πf0i))
2

)

=
1

(2πσ2)N/2
exp

(
− 1

2σ2

N−1∑
i=0

r2i +
A

σ2

N−1∑
i=0

cos(2πf0i)ri −
NA2

2σ2

1

N

N−1∑
i=0

cos2(2πf0i)

)

≈ 1

(2πσ2)N/2
exp

(
− 1

2σ2

N−1∑
i=0

r2i +
A

σ2

N−1∑
i=0

cos(2πf0i)ri −
NA2

4σ2

)

Then we can compute the likelihood ratio :

L(r0, ..., rN−1) =
P (r0, ..., rN−1|H1)

P (r0, ..., rN−1|H0)
= exp

(
A

σ2

N−1∑
i=0

ri cos(2πf0i)−
NA2

4σ2

)
H0

≶
H1

P0

P1

= 1,

which gives us the following MAP rule :

N−1∑
i=0

ri cos(2πf0i)
H0

≶
H1

NA

4
.

Now we can compute the conditional and mean error probabilities.



Under H0 : ri ∼ N(0, σ2) which implies that

N−1∑
i=0

ri cos(2πf0i) ∼ N

(
o, σ2

N−1∑
i=0

cos2(2πf0i)

)
≈ N

(
0,
Nσ2

2

)
.

Hence we obtain

P (E|H0) = P

(
N

(
0,
Nσ2

2

)
>
NA

4

)

= Q

 NA
4√
Nσ2

2


= Q

(√
N
A2

8σ2

)
= Q

(√
N
SNR

8

)
.

Similarly under H1 : ri ∼ N (A cos(2πf0i), σ
2). If we define Z

def
=
∑N−1

i=0 ri cos(2πf0i)

then Z is a Gaussian random variables and

E[Z] =
∑

A cos2(2πf0i) ≈
NA

2

V ar[Z] = σ2

N−1∑
i=0

cos2(2πf0i) =
Nσ2

2
.

Hence Z ∼ N
(
NA
2
, Nσ

2

2

)
. For error probability under H1 we have

P (E|H1) = P

(
Z <

NA

4

)
= Q

 NA
2
− NA

4√
Nσ2

2

 = Q

(√
N

SNR

8

)
.

Combining the conditional error probabilities we obtain the mean error probability as

P (E) =
1

2
P (E|H0) +

1

2
P (E|H1) = Q

(√
N

SNR

8

)

2. You may know from signal processing courses that
∑N−1

i=0 ri cos(2πf0i) is simply the

Discrete Cosine Transform of the sequence (r0, r1, ..., rN−1). Actually the MAP rule

tries to analyze the signal in the frequency domain. If it observes any peak of consid-

erable height at frequency f0, it chooses H1, otherwise it chooses H0, which intuitively

seems correct.

3. The structure of the MAP rule does not change. In other words, the MAP rule com-

putes
∑N−1

i=0 ri cos(2πf0i) and compares it with NA
4

to decide H0 or H1. Now because

of the phase uncertainty the received signal we have ri = A cos(2πf0i+ θ) + Zi.
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Assuming that Z =
∑N−1

i=0 ri cos(2πf0i) as before, which is a Gaussian random variable,

we compute its mean and variance under H1.

E[Z|H1] = A
N−1∑
i=0

cos(2πf0i) cos(2πf0i+ θ0)

= A

(
N−1∑
i=0

cos2(2πf0i) cos(θ0)−
N−1∑
i=0

cos(2πf0i) sin(2πf0i) sin(θ0)

)
≈ NA

2
cos(θ0),

where we used the trigonometric identity cos(α + β) = cos(α) cos(β)− sin(α) sin(β).

V ar[Z] = σ2

N−1∑
i=0

cos2(2πf0i) =
Nσ2

2
,

which implies that :

Z|H1 ∼ N

(
NA

2
cos(θ0),

Nσ2

2

)
.

Hence we obtain the conditional error probability as

P (E|H1) = P

(
Z <

NA

4

)

= Q

 NA
2

cos(θ0)− NA
4√

Nσ2

2


= Q

(
(2 cos(θ0)− 1)

√
N

SNR

8

)

We see that if |θ0| > π
3
, P (E|H1) >

1
2
.

4. , 5. The conditional error probability under H0 does not depend on θ0 because under

H0 the transmitter does not send any signal and we receive pure noise. Hence

P (E) =
1

2

{
Q

(√
N

SNR

8

)
+Q

(
(2 cos(θ0)− 1)

√
N

SNR

8

)}

We can simply see that in the case θ0 = π
2
:

P (E) =
1

2

(
Q

(√
N

SNR

8

)
+Q

(
−
√
N

SNR

8

))
=

1

2
,
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where we used the identity Q(x) +Q(−x) = 1, x ∈ R, and even worse, when θ0 = π

(complete phase change),

P (E) =
1

2

(
Q

(√
N

SNR

8

)
+Q

(
−3

√
N

SNR

8

))
>

1

2
,

This shows that the phase uncertainty can completely disrupt the communication.

Problem 2. (Gram-Schmidt Procedure On Tuples)

We denote inner product by <,>, norm by ||.|| intermediate vectors by φ and final normalized

vector by ψ. We start from β1.

1. ||β1|| =
√
< β1, β1 > =

√
3. ψ1 = β1

||β1|| = ( 1√
3
, 0, 1√

3
, 1√

3
).

2. < ψ1, β2 >=
√

3. φ2 = β2 −
√

3ψ1 = (1, 1,−1, 0). ||φ2|| =
√

3 and so ψ2 = φ2
||φ2|| =

( 1√
3
, 1√

3
,− 1√

3
, 0).

3. < ψ1, β3 >= 0 and < ψ2, β3 >= 0. φ3 = β3 − 0ψ1 + 0ψ2 = (1, 0, 1,−2) and ||φ3|| =√
1 + 1 + 4 =

√
6 and so ψ3 = φ3

||φ3|| = ( 1√
6
, 0, 1√

6
,− 2√

6
).

4. < ψ1, β4 >=
√

3, < ψ2, β4 >= 0 and < ψ3, β4 >=
√

6. φ4 = β4−
√

3ψ1−0ψ2−
√

6ψ3 =

(0, 0, 0, 0).

As can be seen the last vector is zero and this shows that the dimensionality of the space

spanned by β1, · · · , β4 is only 3 not 4. So the other benefit of Gram-Schmidt orthogonaliza-

tion is that it gives us the dimension of the space spanned by initial vectors.

Problem 3. (Gram-Schmidt Procedure On Waveforms)

An orthonormal basis may be found using the so-called Gram-Schmidt procedure.

1. We use Gram-Schmidt procedure:

(a) The first step is to normalize the function s1(t), i.e. the first function of the basis

that we are looking for is

φ0(t) =
s0(t)

||s0(t)||
=

s0(t)√∫
s0(t)2dt

=
s0(t)√∫ 1

0
4t2dt

=

√
3

2
s0(t) =


0 if t < 0√

3t if 0 < t < 1

0 if t > 1

.

(b) Next, we subtract from s1(t) the components that are in the span of the currently

established part of the basis, i.e. in the span of {φ0(t)}. This can be achieved by
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projecting s1(t) onto φ0(t) and then subtracting this projection from s1(t), i.e.

e1(t) = s1(t)− 〈s1(t), φ0(t)〉φ0(t) = s1(t)−
(∫

s1(t)φ0(t)dt

)
φ0(t)

= s1(t)−
(√

3

2

)(
4

3

)
φ0(t)

= s1(t)−
2√
3
φ0(t)

= s1(t)− s0(t)

From this, we find the second basis element as

φ1(t) =
e1(t)

||e1(t)||
. =


0 if t < 1√

3−
√

3(t− 1) if 1 < t < 2

0 if t > 2

(c) Again, we subtract from s2(t) the components that are in the span of the cur-

rently established part of the basis, i.e. in the span of {φ0(t), φ1(t)}. This can

be achieved by projecting s2(t) onto φ0(t) and φ1(t) and then subtracting both

these projections from s2(t). For this step, it is essential that the basis elements

{φ0(t), φ1(t)} be orthonormal. Make sure you understand why. Continuing the

derivation, we obtain

e2(t) = s2(t)− 〈s2(t), φ0(t)〉φ0(t)− 〈s1(t), φ1(t)〉φ1(t)

= s2(t)−
(∫

s2(t)φ0(t)dt

)
φ0(t)−

(∫
s2(t)φ1(t)dt

)
φ1(t)

= s2(t)− 0− e1(t)
= s2(t)− s1(t) + s0(t),

and from this, we find the third basis element as

φ2(t) =
e2(t)

||e2(t)||
=


0 if t < 2

−
√

3(t− 2) if 2 < t < 3

0 if t > 3

.

2. By definition we can write V1(t) and V2(t) as follows

V1(t) = 3φ0(t)− φ1(t) + φ2(t) =


3
√

3t if 0 < t < 1

−(
√

3−
√

3(t− 1)) if 1 < t < 2

−
√

3(t− 2) if 2 < t < 3

and

V2(t) = −φ0(t) + 2φ1(t) + 3φ2(t) =


−
√

3t if 0 < t < 1

2(
√

3−
√

3(t− 1)) if 1 < t < 2

−3
√

3(t− 2) if 2 < t < 3
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3. We know that V1(t) and V2(t) are both real, thus

〈V1(t), V2(t)〉 =

∫
V1(t)V2(t)dt

= 〈V1, V2〉
= −3 ∗ 1− 1 ∗ 2 + 1 ∗ 3

= −2

Problem 4. (Matched Filter Intuition)

1. The Cauchy-Schwarz inequality states

|〈x, y〉| ≤ ||x|| ||y||

with equality if and only if x = αy for some scalar α. For our problem, we can write

|〈s, φ〉|2 ≤ |s|2 |φ|2 = |s|2

with equality if and only if φ = αs for some scalar α. Thus, the maximizing φ(t) is

simply a scaled version of s(t).

Note: In two dimensions, we have |〈x, y〉| ≤ ||x|| ||y|| cosα, where α is the angle

between the two vectors; then, it is clear that the maximum is achieved when cosα = 1

⇔ α = 0 (or α = k2π). Thus, x and y are colinear.

2. The inner product 〈x, y〉 is (using the definitions in the figure below) just the product

of the length x′ and the length y, i.e. 〈x, y〉 = ||x′|| ||y||. But it is immediately clear

that ||x′|| is maximal when x points in the same direction as y.

x

y

x’

3. Denote s = (s1, s2) and φ = (φ1, φ2). The problem is

max
φ1,φ2

(s1φ1 + s2φ2) subject to φ2
1 + φ2

2 = 1.
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Thus, we can reduce by setting φ2 =
√

1− φ2
1 to obtain

max
φ1

(
s1φ1 + s2

√
1− φ2

1

)
.

This maximum is found by taking the derivative:

d

dφ1

(
s1φ1 + s2

√
1− φ2

1

)
= s1 − s2

φ1√
1− φ2

1

.

Setting this equal to zero yields s1 = s2
φ1√
1−φ21

, i.e.

s21 = s22
φ2
1

1− φ2
1

.

This immediately gives φ1 = s1√
s21+s

2
2

and thus φ2 = s2√
s21+s

2
2

, as expected.

Note: the goal of this exercise was to display yet another way to derive the matched

filter.

4. Passing an input s(t) through a filter with impulse response h(t) generates output

waveform y(t) =
∫
s(τ)h(t − τ)dτ . If this waveform y(t) is sampled at time t = T ,

then the output sample is:

y(T ) =

∫
s(τ)h(T − τ)dτ (1)

An example signal s(τ) is shown in Figure 1(a). The filter is then the waveform shown

in 1(b), and the convolution term of the filter in 1(c). Finally, the filter term h(T − τ)

of Equation 1 is shown in 1(d). One can see that h(T − τ) = s(τ), so indeed

y(T ) =

∫
s(τ)h(T − τ)dτ =

∫
s2(τ)dτ =

∫ T

0

s2(τ)dτ.

(v) Denote the signal spectrum by

S(f) =

∫
s(t)e−j2πftdt = |S(f)|ejθ(f).

Then, the spectrum of the matched filter can be written as

H(f) =

∫
h(t)e−j2πftdt =

∫
s(T − t)e−j2πftdt

= e−j2πfTS∗(f) = e−j(θ(f)+2πfT )|S(f)|,

where S∗(f) is the complex conjugate. Now consider the signal f(t) at the output

of the matched filter. It is the convolution of the signal s(t) with the matched filter
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0

T
τ τ

ττ

s(τ ) h(τ ) = s(T − τ )

h(t− τ ) h(T − τ )

T

Tt

(a)

(c) (d)

(b)

0 0

0

Figure 1: Signal and the impulse response waveforms

impulse response h(t). As an inverse Fourier transform,

f(t) =

∫
S(f)H(f)ej2πftdf

=

∫
|S(f)|2e−j2πfT ej2πftdf

=

∫
|S(f)|2ej2πf(t−T )df.

Obviously, if t = T , all components in the integral “add in phase”, and we simply get

f(t = T ) =

∫
|S(f)|2df.

Problem 5. (AWGN Channel And Sufficient Statistic)

For the first part we have:

1. Under hypothesis H = i, the received waveform is Y (t) = si(t)+Z(t) and there is one-

to-one correspondence between Y (t) and Y = (Y0, Y1, Y2)
T where Yi =< Y (t), φi(t) >.

Hence, Y is a sufficient statistic. It is straight forward to verify that when H = i,

Y = si + N .

2. The third component of si is zero for all i. Further more N0, N1 and N2 are zero mean

iid Gaussian random variables. Hence, fY |H(y|i) = fN0(y0 − si0)fN1(y1 − si1)fN2(y2)

which is in the form gi(T (y))h(y) for T (y) = (y0, y1)
T and h(y) = fN2(y2). Hence, by

the Fisher-Neyman factorization theorem, T (Y ) = (Y0, Y1)
T is a sufficient statistic.
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For the second part of the problem in which N2 = N1 we have:

1. If we have only (Y0, Y1) then hypothesis testing problem will be H = i : (Y0, Y1) =

(si0, si1)+(N0, N1) i = 0, 1. Using the fact that s0 = (1, 0, 0)T and s1 = (0, 1, 0)T , the

ML test becomes y0 − y1

H0

>

<

H1

0. Under H = 0, Y0 − Y1 is a Gaussian random variable

with mean 1 and variance 2σ2 and so Pe(0) = Q( 1√
2σ

). By symmetry Pe(1) = Q( 1√
2σ

)

and so the probability of the error will be Pe = 1
2
(Pe(0) + Pe(1)) = Q( 1√

2σ
).

2. Now assume that we have access to Y0, Y1 and Y2. Y2 contains N2 under both hy-

potheses. Hence, Y1 − Y2 = si1 + N1 − N2 = si1. This shows that at the receiver we

can observe the second component of si without noise. As the second component is

different under both hypotheses, we can make an error-free decision about H and the

decision rule will be:

Ĥ =

{
0 y1 − y2 = 0

1 y1 − y2 = 1

Clearly this decision rule minimizes the probability of the error.

3. Y2 allows us to reduce the probability of the error. Hence, (Y0, Y1) can’t be a sufficient

statistic.
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