
Problem 1.

a) For all x ∈ X , since P (x∗) ≥ P (x), then log( 1
P (x)

) ≥ log( 1
P (x∗)

). Hence,

H(X) =
∑
x∈X

P (x) log(
1

P (x)
) ≥ (log(

1

P (x∗)
))
∑
x∈X

P (x) = log(
1

P (x∗)
).

b) As we have seen in class, we define

Z =

{
0, X̂ = X

1, X̂ 6= X

Then, H(X,Z|Y ) = H(X|Y ) +H(Z|X, Y ) = H(Z|Y ) +H(X|Z, Y ).
Moreover, H(Z|X, Y ) ≤ H(Z|X, g(Y ) = X̂) = 0 and H(Z|Y ) ≤ H(Pe). Therefore,

H(X|Y ) ≤ H(Pe)+H(X|Z, Y ) = H(Pe)+PeH(X|Z = 1, Y ) ≤ H(Pe)+Pe log(|X |−1).

c) Assume that x̂ = g(y) for some observation y. This means that P (x̂|y) ≥ P (x|y) for
all x ∈ X . According to part (a), H(X|Y = y) ≥ log( 1

P (x̂|y)). Combining these, we
obtain

P (x̂|y) ≥ e−H(X|Y=y).

On the other hand, Pe = P{X̂ 6= X} = 1− P{X̂ = X}. So,

Pe = 1−
∑
y∈Y

P (Y = y)P (x̂|y)

≤ 1−
∑
y∈Y

P (Y = y)e−H(X|Y=y)

≤ 1− e−
∑
y∈Y P (Y=y)H(X|Y=y)

= 1− eH(X|Y ).

where we used the hint in the last inequality.

Problem 2.

(a)

I(X;Y Z) = I(X;Z) + I(X;Y |Z) = I(X;Y |Z)

= I(X;Y |Z = 1) Pr {Z = 1}+ I(X;Y |Z = 2) Pr {Z = 2}
= pI(X;Y 1) + (1− p)I(X;Y 2)

(b)

max
p(x)

I(X;Y Z) = max
p(x)

pI(X;Y1) + (1− p)I(X;Y2) ≤ pmax
p(x)

I(X;Y1) + (1− p) max
p(x)

I(X;Y2)

= pC1 + (1− p)C2

If both terms are positive, we have equality if the maximizing input distribution is
the same for both terms. In our case, at any δ, the BSC has the uniform distribution
that achieves capacity. So, we need to have that the Z-channel also has the uniform
distribution as capacity achieving distribution, which happens only in degenerated
cases: if ε = 0 or ε = 1. (For details, see Homework 7).

Also, we can have equality if one (or both) of the terms are 0. This happens in four
cases: p = 1, p = 0, ε = 1 or δ = 0.5.
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(c) Encoding : We design two different codes, one for C1 another for C2 using the corre-
sponding capacity achieving distribution (as seen in class). The length of the first
code is (n(p− ε)) the length of the second is (n(1− p− ε)). Take those Xis for which
Zi = 1 together and treat them as one block, then choose their values according to
the first code. Similarly, for the block that consist of Xis for which Zi = 2, we use
the second code.

If the block is larger than code length, set the leftover to 0. If it is shorter, declare
error.

Decoding : The decoding is done similarly. First arrange the output into two blocks
based on Zi, ignore the outputs of the padded 0s, and do the decoding according to
the corresponding code (as seen in class).

For ε-typical Z sequences this code achieves (p − ε)C1 + (1 − p − ε)C2 rate. ε can
be arbitrarily small, and for any ε the probability that the Z sequence is not typical
goes to zero, so with sufficiently large n we can reach pC1 + (1− p)C2.

Note: One can show that I(X;Y |Z) is a valid upper-bound for this case also, so
pC1 + (1− p)C2 is in fact the capacity of this non-casual channel.

Problem 3.

log(p(y1...yn|x1...xn)) = log(
n∏
i=1

p(yi|xi))

= log(
∏

x∈X ,y∈Y

p(y|x)N(x,y))

=
∑

x∈X ,y∈Y

log(p(y|x)N(x,y))

≤
∑

x∈X ,y∈Y

log(p(y|x)n(1−ε)p(y|x))

=
∑

x∈X ,y∈Y

n(1− ε)p(x, y) log(p(y|x))

= −n(1− ε)H(Y |X)

⇒ p(y1...yn)|(x1...xn)) ≤ 2−n(1−ε)H(Y |X)

By similar steps, we find log(p(y1...yn)|(x1...xn)) ≥ 2−n(1+ε)H(Y |X). The cardinality of
the typical set is then upper bounded as:

1 ≥
∑

y∈Aε,npY |X

p(y1, ..., yn|x1, ...xn)

≥
∑

y∈Aε,npY |X

2−n(1+ε)H(Y |X)

= ‖Aε,npY |X‖2
−n(1+ε)H(Y |X)

⇒ ‖Aε,npY |X‖ ≤ 2n(1+ε)H(Y |X).
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Problem 4.

1. Let Pe,0 and Pe,1 denote the conditional error probabilities given that the input 0 and
1 are sent, respectively. Then, we have

Pe,0 =
∑
y∈Y

P (y|0)1{y :
P (y|1)

P (y|0)
≥ 1}

≤
∑
y∈Y

P (y|0)
√
P (y|1)/P (y|0) = Z(P )

Pe,1 =
∑
y∈Y

p(y|1)1{y :
P (y|0)

P (y|1)
≥ 1}

≤
∑
y∈Y

P (y|1)
√
P (y|0)/P (y|1) = Z(P )

where 1{.} is the indicator function.

Hence the average error probability Pe is given by

Pe = Pr(X = 0)Pe,0 + Pr(X = 1)Pe,1 = Z(P ).

2. The function Z(P ) is a concave function of the channel transition probabilities, i.e.,
given any collection of B-DMCs, Pj : X → Y , j ∈ J , and a probability distribution
Q on J , if we define P : X → Y as the channel P (y|x) =

∑
j∈J Q(j)Pj(y|x), then,∑

j∈J

Q(j)Z(Pj) ≤ Z(P ).

To show this, we start using the hint

Z(P ) =
∑
y

√
P (y|0)P (y|1)

= −1 +
1

2

∑
y

[∑
x

√
P (y|x)

]2

Then, we apply Minkowsky’s inequality to get

Z(P ) ≥ −1 +
1

2

∑
y

∑
j∈J

Q(j)

[∑
x

√
Pj(y|x)

]2

=
∑
j∈J

Q(j)Z(Pj).
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