ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 20	Information	Theory and Coding
Homework 9		November 22, 2011

This is a graded homework due to 30 November 2011, 5 pm, INR 036.

Problem 1.

a) Let x^* be the most probable letter of a finite source \mathcal{X} , i.e. $P(x^*) \ge P(x)$, for all $x \in \mathcal{X}$. Show that

$$H(X) \ge \log(\frac{1}{P(x^*)}).$$

b) [Fano's Inequality] Assume that \mathcal{X} generates a letter and we want to estimate the outcome of \mathcal{X} by observing random variable Y which is related to X by the conditional distribution p(y|x). From Y, we calculate a function $g(Y) = \hat{X}$, where \hat{X} is an estimate of X. Let P_e be the error probability of estimation defined as $P_e = P\{\hat{X} \neq X\}$. Prove that

$$H(X \mid Y) \le H(P_e) + P_e \log(|\mathcal{X}| - 1),$$

where $|\mathcal{X}|$ denotes the number of letters in the alphabet \mathcal{X} .

c) [Fano's Inverse Inequality] Assume that we use a *Maximum A Posteriori* estimator, i.e. for an observation y,

$$\hat{x} = g(y) = \arg\max_{x \in \mathcal{X}} p(x|y).$$

Prove that

$$P_e \le 1 - 2^{-H(X|Y)}.$$

Hint: use part (a) and note that $\sum_{i} p_i 2^{-u_i} \ge 2^{-\sum_i p_i u_i}$.

PROBLEM 2. Consider the following channel. C_1 is a Z-channel with error probability ϵ , C_2 is a BSC with error probability δ . Let us denote the transition matrices of C_1 and C_2 $p_1(y^1|x)$ and $p_2(y^2|x)$ respectively. The transition matrix of channel C is $p_z(y|x)$, where zis determined by a random variable Z on $\{1, 2\}$. In other words, the output Y of channel C is either the output Y^1 of channel C_1 or the output Y^2 of channel C_2 depending on Z. Zis selected independently of the channel input and can be observed by the receiver.

(a) Let $\Pr{\{Z=1\}} = p$. Show that

$$I(X; YZ) = pI(X; Y^{1}) + (1 - p)I(X; Y^{2})$$

(b) Let C_1 , C_2 , C be the capacities of channels C_1 , C_2 , C respectively. Note that $C = \max_{p(x)} I(X; YZ)$. Show that

$$C \le pC_1 + (1-p)C_2$$

What is the condition for equality (in terms of ϵ, δ, p)?

(c) Now, consider such a channel over *n* uses. Then, $p(y_1, \ldots, y_n | x_1, \ldots, x_n) = \prod_{i=1}^n p_{z_i}(y_i | x_i)$. Assume the sequence Z_1, \ldots, Z_n is i.i.d. and known in advance by both the encoder and the decoder. Show that the rate $pC_1 + (1-p)C_2$ is achievable. PROBLEM 3. We define the set of conditionally typical sequences as

$$A_{P_{Y|X}}^{\epsilon,n}(x_1^n) = \{y_1^n : (x_1^n, y_1^n) \in A_{P_{XY}}^{\epsilon,n}\}$$

where $A_{P_{XY}}^{\epsilon,n}$ is the set of ϵ jointly typical sequences of length n. Show that

$$|A_{P_{Y|X}}^{\epsilon,n}(x_1^n)| \le 2^{n(1+\epsilon)H(Y|X)}$$

PROBLEM 4. Let P(y|x) be the transition probability of a binary input discrete memoryless channel with an arbitrary output alphabet \mathcal{Y} . We define a quantity

$$Z(P) = \sum_{y \in \mathcal{Y}} \sqrt{P(y|0)P(y|1)}.$$

- 1. Assume the channel is used only once to transmit an input, and the received channel output is decoded using a maximum-likelihood decoder. Show that Z(P) is an upper bound to the resulting average error probability.
- 2. Show that Z(P) is a convex function of the channel transition probabilities.

Hint: You can start by showing that
$$Z(P) = \frac{1}{2} \sum_{y \in \mathcal{Y}} \left(\sum_{x \in \{0,1\}} \sqrt{P(y|x)} \right)^2 - 1.$$