ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Information Theory and Coding
November 22, 2011

This is a graded homework due to 30 November 2011, 5 pm, INR 036.

Problem 1.

a) Let x^{*} be the most probable letter of a finite source \mathcal{X}, i.e. $P\left(x^{*}\right) \geq P(x)$, for all $x \in \mathcal{X}$. Show that

$$
H(X) \geq \log \left(\frac{1}{P\left(x^{*}\right)}\right)
$$

b) [Fano's Inequality] Assume that \mathcal{X} generates a letter and we want to estimate the outcome of \mathcal{X} by observing random variable Y which is related to X by the conditional distribution $p(y \mid x)$. From Y, we calculate a function $g(Y)=\hat{X}$, where \hat{X} is an estimate of X. Let P_{e} be the error probability of estimation defined as $P_{e}=P\{\hat{X} \neq$ $X\}$. Prove that

$$
H(X \mid Y) \leq H\left(P_{e}\right)+P_{e} \log (|\mathcal{X}|-1)
$$

where $|\mathcal{X}|$ denotes the number of letters in the alphabet \mathcal{X}.
c) [Fano's Inverse Inequality] Assume that we use a Maximum A Posteriori estimator, i.e. for an observation y,

$$
\hat{x}=g(y)=\arg \max _{x \in \mathcal{X}} p(x \mid y) .
$$

Prove that

$$
P_{e} \leq 1-2^{-H(X \mid Y)} .
$$

Hint: use part (a) and note that $\sum_{i} p_{i} 2^{-u_{i}} \geq 2^{-\sum_{i} p_{i} u_{i}}$.
Problem 2. Consider the following channel. \mathcal{C}_{1} is a Z-channel with error probability ϵ, \mathcal{C}_{2} is a BSC with error probability δ. Let us denote the transition matrices of \mathcal{C}_{1} and \mathcal{C}_{2} $p_{1}\left(y^{1} \mid x\right)$ and $p_{2}\left(y^{2} \mid x\right)$ respectively. The transition matrix of channel \mathcal{C} is $p_{z}(y \mid x)$, where z is determined by a random variable Z on $\{1,2\}$. In other words, the output Y of channel \mathcal{C} is either the output Y^{1} of channel \mathcal{C}_{1} or the output Y^{2} of channel \mathcal{C}_{2} depending on $Z . Z$ is selected independently of the channel input and can be observed by the receiver.
(a) Let $\operatorname{Pr}\{Z=1\}=p$. Show that

$$
I(X ; Y Z)=p I\left(X ; Y^{1}\right)+(1-p) I\left(X ; Y^{2}\right)
$$

(b) Let C_{1}, C_{2}, C be the capacities of channels $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}$ respectively. Note that $C=$ $\max _{p(x)} I(X ; Y Z)$. Show that

$$
C \leq p C_{1}+(1-p) C_{2}
$$

What is the condition for equality (in terms of ϵ, δ, p)?
(c) Now, consider such a channel over n uses. Then, $p\left(y_{1}, \ldots, y_{n} \mid x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p_{z_{i}}\left(y_{i} \mid x_{i}\right)$. Assume the sequence Z_{1}, \ldots, Z_{n} is i.i.d. and known in advance by both the encoder and the decoder. Show that the rate $p C_{1}+(1-p) C_{2}$ is achievable.

Problem 3. We define the set of conditionally typical sequences as

$$
A_{P_{Y \mid X}}^{\epsilon, n}\left(x_{1}^{n}\right)=\left\{y_{1}^{n}:\left(x_{1}^{n}, y_{1}^{n}\right) \in A_{P_{X Y}}^{\epsilon, n}\right\}
$$

where $A_{P_{X Y}}^{\epsilon, n}$ is the set of ϵ jointly typical sequences of length n. Show that

$$
\left|A_{P_{Y \mid X}}^{\epsilon, n}\left(x_{1}^{n}\right)\right| \leq 2^{n(1+\epsilon) H(Y \mid X)} .
$$

Problem 4. Let $P(y \mid x)$ be the transition probability of a binary input discrete memoryless channel with an arbitrary output alphabet \mathcal{Y}. We define a quantity

$$
Z(P)=\sum_{y \in \mathcal{Y}} \sqrt{P(y \mid 0) P(y \mid 1)}
$$

1. Assume the channel is used only once to transmit an input, and the received channel output is decoded using a maximum-likelihood decoder. Show that $Z(P)$ is an upper bound to the resulting average error probability.
2. Show that $Z(P)$ is a convex function of the channel transition probabilities.

Hint: You can start by showing that $Z(P)=\frac{1}{2} \sum_{y \in \mathcal{Y}}\left(\sum_{x \in\{0,1\}} \sqrt{P(y \mid x)}\right)^{2}-1$.

