ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 4
Solution 2

Signal Processing for Communications
March 7, 2011, INF213 - 10:15am-12:00

Problem 1 (Any Basis of a Hilbert Space has Same Cardinality).
Since B is a basis for H, we can write all x_{i}^{\prime} for $i=1 \ldots n$ as

$$
x_{i}^{\prime}=\sum_{j=1}^{n} \alpha_{i j} x_{j} .
$$

Consider $\left\langle x_{k}^{\prime}, x_{l}^{\prime}\right\rangle$ for $k, l=1, \ldots, n$.

$$
\begin{array}{rlr}
\left\langle x_{k}^{\prime}, x_{l}^{\prime}\right\rangle & =\left\langle\sum_{j=1}^{n} \alpha_{k j} x_{j}, \sum_{i=1}^{n} \alpha_{l i} x_{i}\right\rangle \quad \text { using the distributive and scaling properties } \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{k j} \alpha_{l i}^{*}\left\langle x_{j}, x_{i}\right\rangle \quad \text { since }\left\langle x_{j}, x_{i}\right\rangle=0, \text { for } i \neq j \quad \text { and }\left\langle x_{i}, x_{i}\right\rangle=1 \\
& =\sum_{j=1}^{n} \alpha_{k j} \alpha_{l j}^{*}=0 .
\end{array}
$$

If we define $\left(\alpha_{k 1}, \cdots, \alpha_{k n}\right)$ as the vector $\overline{\alpha_{k}} \in \mathbb{C}^{N}$, then the above condition is equivalent to :
$(*) \quad\left\langle\bar{\alpha}_{k}, \bar{\alpha}_{l}\right\rangle=0 \quad \forall k, l=1 \ldots n$
Since any set of orthogonal vectors in \mathbb{C}^{N} has cardinality at most n, this implies that we can at most have n vectors $\overline{\alpha_{i}}, i=1 \ldots n$ which satisfies ($*$). Hence $m \leq n$.

We can do the same for expanding $\left\{x_{i}\right\}$ in terms of the basis B^{\prime}, which implies that $n \leq m$. Therefore, $m=n$.

Problem 2 (Gram-Schmidt).
In Gram-Schmidt procedure, we make an orthonormal basis from a given set of vectors $\left\{u_{1}, \cdots, u_{n}\right\}$. At each step, we pick vector u_{l} from the set and make an orthonormal vector that is orthogonal to the subspace of the already chosen vectors $\left\{u_{1}, \cdots, u_{l-1}\right\}$ with the following procedure.

We find the projection of u_{l} in the subspace and then reduce the projection from u_{l}. The resulting vector is orthogonal to the subspace and consequently to all previous vectors. After normalization, it is a new member of our basis. At the first step, we start by normalizing u_{1} as the first element of the basis.

In this problem,

$$
\begin{aligned}
& v_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}=\frac{1}{2}(1,-1,1,-1) \\
& w_{2}=u_{2}-\left\langle u_{2}, v_{1}\right\rangle v_{1}=(5,1,1,1)-\frac{2}{2}(1,-1,1,-1)=(4,2,0,2)
\end{aligned}
$$

where $\left\langle u_{2}, v_{1}\right\rangle v_{1}$ is the projection of u_{2} on v_{1}.
Then $v_{2}=\frac{w_{2}}{\left\|w_{2}\right\|}=\frac{1}{\sqrt{24}}(4,2,0,2)$.
$w_{3}=u_{3}-\left\langle u_{3}, v_{1}\right\rangle v_{1}-\left\langle u_{3}, v_{2}\right\rangle v_{2}=(-3,-3,1,-3)-(1,-1,1,-1)+(4,2,0,2)=(0,0,0,0)$. Since $w_{3}=0$, it means that u_{3} is in the subspace of $\left\{v_{1}, v_{2}\right\}$ and it does not introduce a new dimension. Therefore, these three vectors are in a space spanned by $\left\{v_{1}, v_{2}\right\}$.

Problem 3 (Various Norms).
We should verify the three properties of a norm :
(i) strict positivity : $v(x) \geq 0$ and $v(x)=0 \Leftrightarrow x=0$
(ii) homogeneity : $v(\alpha x)=|\alpha| v(x)$
(iii) triangle inequality: $v(x+y) \leq v(x)+v(y)$

Let us first check $v_{1}(x)$:
(i) $v_{1}(x)=\sum_{k=1}^{N}\left|x_{k}\right| \geq 0$ since $\left|x_{i}\right| \geq 0$ for all i and $v_{1}(x)=\sum_{k=1}^{N}\left|x_{k}\right|=0$ if for all $i,\left|x_{i}\right|=0$ which is $(0,0, \ldots, 0)$.
(ii) We know that if $y, z \in \mathbb{C}$ then $|y \cdot z|=|y||z|$. Therefore, $v_{1}(\alpha x)=\sum_{k=1}^{N}\left|\alpha x_{k}\right|=\sum_{k=1}^{N}|\alpha|\left|x_{k}\right|=|\alpha| \sum_{k=1}^{N}\left|x_{k}\right|=|\alpha| v_{1}(x)$.
(iii) Let y, z be two complex numbers. Then $|y+z|^{2}=(y+z)(y+z)^{*}=y y^{*}+y z^{*}+z y^{*}+z z^{*}=|y|^{2}+|z|^{2}+y z^{*}+z y^{*}$. $z y^{*}$ is the complex conjugate of $y z^{*}$. Therefore, $y z^{*}+z y^{*}=2 \operatorname{Re}\left\{y z^{*}\right\} \leq 2\left|y z^{*}\right|$ where $\operatorname{Re}\{\cdot\}$ denotes the real part of a complex number. Hence, $|y z|^{2} \leq|y|^{2}+|z|^{2}+2|y||z|=$ $(|y|+|z|)^{2}$. It means that $|y+z| \leq|y|+|z|$. Thus, $v_{1}(x+y)=\sum_{k=1}^{N}\left|x_{k}+y_{k}\right| \leq$ $\sum_{k=1}^{N}\left(\left|x_{k}\right|+\left|y_{k}\right|\right)=\sum_{k=1}^{N}\left|x_{k}\right|+\sum_{k=1}^{N}\left|y_{k}\right|=v_{1}(x)+v_{1}(y)$.

Therefore, $v_{1}(x)$ is a norm on \mathbb{C}^{N}.
We do the same for $v_{2}(x)$:
(i) $v_{2}(x)=\left(\sum_{k=1}^{N}\left|x_{k}\right|^{2}\right)^{1 / 2} \geq 0$ since for every $k,\left|x_{k}\right|^{2} \geq 0$ and $v_{2}(x)=0$ iff for all k, $x_{k}=0$.
(ii) $\left.v_{2}(\alpha x)=\left(\sum_{k=1}^{N}\left|\alpha x_{k}\right|^{2}\right)^{1 / 2}=\left(\sum_{k=1}^{N}|\alpha|^{2}\left|x_{k}\right|^{2}\right)^{1 / 2}=\right)\left(|\alpha|^{2} \sum_{k=1}^{N}\left|x_{k}\right|^{2}\right)^{1 / 2}=|\alpha| v_{2}(x)$.
(iii) To verify the triangle inequality, we use Minkowsky lemma:

$$
\left(\sum_{k=1}^{\infty}\left|x_{k}+y_{k}\right|^{p}\right)^{1 / p} \leq\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p}+\left(\sum_{k=1}^{\infty}\left|y_{k}\right|^{p}\right)^{1 / p}, \quad p \geq 1 .
$$

This lemma is much more than what we need to prove the triangle inequality for special case $p=2$. It says that for not only $p=2$ and finite dimensional spaces, but also for any arbitrary $p \geq 1$ and infinite dimensional spaces the triangle inequality holds.

Problem 4 (Convergent Sequences are Cauchy Sequences).

On a metric space with metric $d(\cdot, \cdot)$, a sequence x_{n} is convergent to x, if for every ε, there exists $N \in \mathbb{N}$ such that

$$
d\left(x_{n}, x\right)<\varepsilon \quad \text { for all } n>N .
$$

We should show that every convergent sequence is a Cauchy sequence, i.e. for every ε, there exists $N \in \mathbb{N}$ such that

$$
d\left(x_{n}, x_{m}\right)<\varepsilon \quad \text { for all } m, n>N .
$$

Assume that x_{n} converges to x. From triangular property of metrics :

$$
d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x\right)+d\left(x_{m}, x\right)
$$

Then since x_{n} converges to x, for every $\varepsilon / 2$, there exists N such that

$$
\left\{\begin{array}{ll}
d\left(x_{n}, x\right)<\varepsilon / 2 & n>N \\
d\left(x_{m}, x\right)<\varepsilon / 2 & m>N
\end{array}\right\} \Rightarrow d\left(x_{n}, x_{m}\right)<\varepsilon \quad \text { for all } n, m>N
$$

Therefore, it is a Cauchy sequence.
Problem 5 (Incompleteness of \mathbb{Q}).

1. a_{n+1} is positive if a_{n} is positive. As we started from $a_{1}=2$, then a_{n} is always positive. On the other hand :

$$
a_{n+1}=\frac{a_{n}^{2}+2}{2 a_{n}} \geq \sqrt{2} \text { since } a_{n}^{2}+2 \geq 2 \sqrt{2} a_{n} \Leftrightarrow\left(a_{n}-\sqrt{2}\right)^{2} \geq 0
$$

Thus, a_{n} is bounded from below by $\sqrt{2}$. Moreover it is decreasing, since

$$
a_{n+1} \leq a_{n} \Leftrightarrow \frac{1}{a_{n}} \leq \frac{a_{n}}{2} \Leftrightarrow a_{n} \geq \sqrt{2}
$$

Therefore, a_{n} is a decreasing sequence bounded between $\sqrt{2}$ and 2 . We know from monotone convergence theorem, that the monotone and bounded sequence in \mathbb{R} with metric of absolute value is convergent. To find the limit, assume that $\lim _{n \rightarrow \infty} a_{n+1}=$ $\lim _{n \rightarrow \infty} a_{n}=L$. Hence :

$$
L=\frac{L}{2}+\frac{1}{L} \Rightarrow \frac{L}{2}=\frac{1}{L} \Rightarrow L=\sqrt{2} .
$$

2. Since a_{n} is convergent it is a Cauchy sequence in \mathbb{R}. Note that a_{n} are rational numbers because each is the summation of two rational numbers. Therefore, it is a Cauchy sequence in \mathbb{Q}.
As it is shown in part (i), the sequence a_{n} converges to $\sqrt{2}$ which is not a member of \mathbb{Q}. Therefore, a_{n} cannot converge in \mathbb{Q} and $\left\{a_{n}\right\}$ is not convergent in \mathbb{Q}. Thus, \mathbb{Q} is not complete.

Problem 6 (Properties of DFT).
Recall the DFT analysis and synthesis equations :

$$
\begin{aligned}
& \text { Analysis equation : } X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n} \\
& \text { Synthesis equation : } x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi}{N} k n}
\end{aligned}
$$

Using the definitions we can now check the properties :

1) Linearity :

$$
\begin{aligned}
z[n] & =\alpha x[n]+\beta y[n] \\
Z[k] & =\sum_{n=0}^{N-1} z[n] e^{-j \frac{2 \pi}{N} k n} \\
& =\sum_{n=0}^{N-1}(\alpha x[n]+\beta y[n]) e^{-j \frac{2 \pi}{N} k n} \\
& =\alpha \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}+\beta \sum_{n=0}^{N-1} y[n] e^{-j \frac{2 \pi}{N} k n} \\
& =\alpha X[k]+\beta Y[k] .
\end{aligned}
$$

2) Circular Shift :

Note that by taking $\bmod N$, we are only interested with shifts in the interval $0 \leq m \leq$ $N-1$.

$$
\begin{aligned}
z[n] & =x[(n-m) \bmod N] \\
Z[k] & =\sum_{n=0}^{N-1} z[n] e^{-j \frac{2 \pi}{N} k n} \\
& =\sum_{n=0}^{N-1} x[\underbrace{(n-m)}_{l} \bmod N] e^{-j \frac{2 \pi}{N} k n} \\
& =\sum_{l=0}^{N-1} x[l] e^{-j \frac{2 \pi}{N} k((l+m) \bmod N)} \\
& =e^{-j \frac{2 \pi}{N} k m} \sum_{l=0}^{N-1} x[l] e^{-j \frac{2 \pi}{N} k l} \quad \text { since } e^{-j \frac{2 \pi}{N} k n} \text { is periodic with period } N \text { in both } k, n \\
& =e^{-j \frac{2 \pi}{N} k m} X[k] .
\end{aligned}
$$

3) Duality

$$
\begin{aligned}
z[n] & =X[n] \\
Z[k] & =\sum_{n=0}^{N-1} z[n] e^{-j \frac{2 \pi}{N} k n}=\sum_{n=0}^{N-1} X[n] e^{-j \frac{2 \pi}{N} k n} \\
Z[(-k) \bmod N] & =\sum_{n=0}^{N-1} X[n] e^{j \frac{2 \pi}{N} k n}=N x[k] \\
Z[k] & =N x[-k \bmod N] .
\end{aligned}
$$

4) Symmetries
(i) $z[n]=x^{*}[n]$

$$
\begin{aligned}
Z[k] & =\sum_{n=0}^{N-1} z[n] e^{-j \frac{2 \pi}{N} k n} \\
& =\sum_{n=0}^{N-1} x^{*}[n] e^{-j \frac{2 \pi}{N} k n} \\
& =\left(\sum_{n=0}^{N-1} x[n] e^{j \frac{2 \pi}{N} k n}\right)^{*} \\
& =X^{*}[-k \bmod N]
\end{aligned}
$$

(ii) $x_{e p}[n]=\frac{1}{2}\left\{x[n]+x^{*}[(-n) \bmod N]\right\}$

$$
\begin{aligned}
X_{e p}[k] & =\frac{1}{2}\left\{\operatorname{DFT}\{x[n]\}+\operatorname{DFT}\left\{x^{*}[(-n) \bmod N]\right\}\right\} \\
& =\frac{1}{2}\left\{X[k]+X^{*}[k]\right\} \\
& =\operatorname{Re}\{X[k]\}
\end{aligned}
$$

(iii) $x_{o p}[n]=\frac{1}{2}\left\{x[n]-x^{*}[(-n) \bmod N]\right\}$

$$
\begin{aligned}
X_{e p}[k] & =\frac{1}{2}\left\{\operatorname{DFT}\{x[n]\}-\operatorname{DFT}\left\{x^{*}[(-n) \bmod N]\right\}\right\} \\
& =\frac{1}{2}\left\{X[k]-X^{*}[k]\right\} \\
& =j \operatorname{Im}\{X[k]\}
\end{aligned}
$$

5) Cyclic convolution

$$
\begin{aligned}
z[n] & =\sum_{n=0}^{N-1} x[m] y[(n-m) \bmod N] \\
Z[k] & =\sum_{n=0}^{N-1} \sum_{m=0}^{N-1} x[m] y[(n-m) \bmod N] e^{-j \frac{2 \pi}{N} k n} \\
& =\sum_{m=0}^{N-1} x[m] \sum_{n=0}^{N-1} y[(n-m) \bmod N] e^{-j \frac{2 \pi}{N} k n} \\
& =\sum_{m=0}^{N-1} x[m] Y[k] e^{-j \frac{2 \pi}{N} k m} \\
& =Y[k] \sum_{m=0}^{N-1} x[m] e^{-j \frac{2 \pi}{N} k m} \\
& =Y[k] X[k] .
\end{aligned}
$$

