ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 4	Signal Processing for Communications
Solution 2	March 7, 2011, INF213 – 10:15am-12:00

Problem 1 (Any Basis of a Hilbert Space has Same Cardinality).

Since B is a basis for H, we can write all x'_i for $i = 1 \dots n$ as

$$x_i' = \sum_{j=1}^n \alpha_{ij} x_j.$$

Consider $\langle x'_k, x'_l \rangle$ for $k, l = 1, \ldots, n$.

$$\langle x'_k, x'_l \rangle = \langle \sum_{j=1}^n \alpha_{kj} x_j, \sum_{i=1}^n \alpha_{li} x_i \rangle$$
 using the distributive and scaling properties
$$= \sum_{j=1}^n \sum_{i=1}^n \alpha_{kj} \alpha^*_{li} \langle x_j, x_i \rangle$$
 since $\langle x_j, x_i \rangle = 0$, for $i \neq j$ and $\langle x_i, x_i \rangle = 1$
$$= \sum_{j=1}^n \alpha_{kj} \alpha^*_{lj} = 0.$$

If we define $(\alpha_{k1}, \dots, \alpha_{kn})$ as the vector $\bar{\alpha_k} \in \mathbb{C}^N$, then the above condition is equivalent to :

*)
$$\langle \bar{\alpha_k}, \bar{\alpha_l} \rangle = 0 \quad \forall k, l = 1 \dots n$$

Since any set of orthogonal vectors in \mathbb{C}^N has cardinality at most n, this implies that we can at most have n vectors $\bar{\alpha}_i, i = 1 \dots n$ which satisfies (*). Hence $m \leq n$.

We can do the same for expanding $\{x_i\}$ in terms of the basis B', which implies that $n \leq m$. Therefore, m = n.

Problem 2 (Gram-Schmidt).

In Gram-Schmidt procedure, we make an orthonormal basis from a given set of vectors $\{u_1, \dots, u_n\}$. At each step, we pick vector u_l from the set and make an orthonormal vector that is orthogonal to the subspace of the already chosen vectors $\{u_1, \dots, u_{l-1}\}$ with the following procedure.

We find the projection of u_l in the subspace and then reduce the projection from u_l . The resulting vector is orthogonal to the subspace and consequently to all previous vectors. After normalization, it is a new member of our basis. At the first step, we start by normalizing u_1 as the first element of the basis.

In this problem,

$$v_1 = \frac{u_1}{||u_1||} = \frac{1}{2}(1, -1, 1, -1),$$

$$w_2 = u_2 - \langle u_2, v_1 \rangle v_1 = (5, 1, 1, 1) - \frac{2}{2}(1, -1, 1, -1) = (4, 2, 0, 2),$$

where $\langle u_2, v_1 \rangle v_1$ is the projection of u_2 on v_1 .

Then $v_2 = \frac{w_2}{||w_2||} = \frac{1}{\sqrt{24}}(4, 2, 0, 2).$ $w_3 = u_3 - \langle u_3, v_1 \rangle v_1 - \langle u_3, v_2 \rangle v_2 = (-3, -3, 1, -3) - (1, -1, 1, -1) + (4, 2, 0, 2) = (0, 0, 0, 0).$ Since $w_3 = 0$, it means that u_3 is in the subspace of $\{v_1, v_2\}$ and it does not introduce a new dimension. Therefore, these three vectors are in a space spanned by $\{v_1, v_2\}.$

Problem 3 (Various Norms).

We should verify the three properties of a norm :

- (i) strict positivity : $v(x) \ge 0$ and $v(x) = 0 \Leftrightarrow x = 0$
- (ii) homogeneity : $v(\alpha x) = |\alpha|v(x)$
- (iii) triangle inequality : $v(x+y) \le v(x) + v(y)$

Let us first check $v_1(x)$:

- (i) $v_1(x) = \sum_{k=1}^{N} |x_k| \ge 0$ since $|x_i| \ge 0$ for all *i* and $v_1(x) = \sum_{k=1}^{N} |x_k| = 0$ if for all *i*, $|x_i| = 0$ which is $(0, 0, \dots, 0)$.
- (ii) We know that if $y, z \in \mathbb{C}$ then $|y \cdot z| = |y||z|$. Therefore, $v_1(\alpha x) = \sum_{k=1}^N |\alpha x_k| = \sum_{k=1}^N |\alpha| |x_k| = |\alpha| \sum_{k=1}^N |x_k| = |\alpha| v_1(x).$
- (iii) Let y, z be two complex numbers. Then $|y+z|^2 = (y+z)(y+z)^* = yy^* + yz^* + zy^* + zz^* = |y|^2 + |z|^2 + yz^* + zy^*.$ zy^* is the complex conjugate of yz^* . Therefore, $yz^* + zy^* = 2 \operatorname{Re} \{yz^*\} \le 2|yz^*|$ where $\operatorname{Re} \{\cdot\}$ denotes the real part of a complex number. Hence, $|yz|^2 \le |y|^2 + |z|^2 + 2|y||z| = (|y| + |z|)^2$. It means that $|y+z| \le |y| + |z|$. Thus, $v_1(x+y) = \sum_{k=1}^N |x_k + y_k| \le \sum_{k=1}^N (|x_k| + |y_k|) = \sum_{k=1}^N |x_k| + \sum_{k=1}^N |y_k| = v_1(x) + v_1(y).$

Therefore, $v_1(x)$ is a norm on \mathbb{C}^N .

We do the same for $v_2(x)$:

(i) $v_2(x) = (\sum_{k=1}^N |x_k|^2)^{1/2} \ge 0$ since for every k, $|x_k|^2 \ge 0$ and $v_2(x) = 0$ iff for all k, $x_k = 0$.

(ii)
$$v_2(\alpha x) = (\sum_{k=1}^N |\alpha x_k|^2)^{1/2} = (\sum_{k=1}^N |\alpha|^2 |x_k|^2)^{1/2} =)(|\alpha|^2 \sum_{k=1}^N |x_k|^2)^{1/2} = |\alpha|v_2(x).$$

(iii) To verify the triangle inequality, we use Minkowsky lemma :

$$\left(\sum_{k=1}^{\infty} |x_k + y_k|^p\right)^{1/p} \le \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{\infty} |y_k|^p\right)^{1/p}, \qquad p \ge 1.$$

This lemma is much more than what we need to prove the triangle inequality for special case p = 2. It says that for not only p = 2 and finite dimensional spaces, but also for any arbitrary $p \ge 1$ and infinite dimensional spaces the triangle inequality holds.

Problem 4 (Convergent Sequences are Cauchy Sequences).

On a metric space with metric $d(\cdot, \cdot)$, a sequence x_n is convergent to x, if for every ε , there exists $N \in \mathbb{N}$ such that

$$d(x_n, x) < \varepsilon$$
 for all $n > N$.

We should show that every convergent sequence is a Cauchy sequence, i.e. for every ε , there exists $N \in \mathbb{N}$ such that

$$d(x_n, x_m) < \varepsilon$$
 for all $m, n > N$.

Assume that x_n converges to x. From triangular property of metrics :

$$d(x_n, x_m) \le d(x_n, x) + d(x_m, x)$$

Then since x_n converges to x, for every $\varepsilon/2$, there exists N such that

$$\left\{ \begin{array}{ll} d(x_n, x) < \varepsilon/2 & n > N \\ d(x_m, x) < \varepsilon/2 & m > N \end{array} \right\} \Rightarrow d(x_n, x_m) < \varepsilon \qquad \text{for all } n, m > N$$

Therefore, it is a Cauchy sequence.

Problem 5 (Incompleteness of \mathbb{Q}).

1. a_{n+1} is positive if a_n is positive. As we started from $a_1 = 2$, then a_n is always positive. On the other hand :

$$a_{n+1} = \frac{a_n^2 + 2}{2a_n} \ge \sqrt{2} \text{ since } a_n^2 + 2 \ge 2\sqrt{2}a_n \Leftrightarrow (a_n - \sqrt{2})^2 \ge 0$$

Thus, a_n is bounded from below by $\sqrt{2}$. Moreover it is decreasing, since

$$a_{n+1} \le a_n \Leftrightarrow \frac{1}{a_n} \le \frac{a_n}{2} \Leftrightarrow a_n \ge \sqrt{2}$$

Therefore, a_n is a decreasing sequence bounded between $\sqrt{2}$ and 2. We know from monotone convergence theorem, that the monotone and bounded sequence in \mathbb{R} with metric of absolute value is convergent. To find the limit, assume that $\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n = L$. Hence :

$$L = \frac{L}{2} + \frac{1}{L} \Rightarrow \frac{L}{2} = \frac{1}{L} \Rightarrow L = \sqrt{2}.$$

2. Since a_n is convergent it is a Cauchy sequence in \mathbb{R} . Note that a_n are rational numbers because each is the summation of two rational numbers. Therefore, it is a Cauchy sequence in \mathbb{Q} .

As it is shown in part (i), the sequence a_n converges to $\sqrt{2}$ which is not a member of \mathbb{Q} . Therefore, a_n cannot converge in \mathbb{Q} and $\{a_n\}$ is not convergent in \mathbb{Q} . Thus, \mathbb{Q} is not complete.

Problem 6 (Properties of DFT).

Recall the DFT analysis and synthesis equations :

Analysis equation :
$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

Synthesis equation : $x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j\frac{2\pi}{N}kn}$

Using the definitions we can now check the properties :

1) Linearity :

$$\begin{split} z[n] &= \alpha x[n] + \beta y[n] \\ Z[k] &= \sum_{n=0}^{N-1} z[n] e^{-j\frac{2\pi}{N}kn} \\ &= \sum_{n=0}^{N-1} (\alpha x[n] + \beta y[n]) e^{-j\frac{2\pi}{N}kn} \\ &= \alpha \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn} + \beta \sum_{n=0}^{N-1} y[n] e^{-j\frac{2\pi}{N}kn} \\ &= \alpha X[k] + \beta Y[k]. \end{split}$$

2) <u>Circular Shift</u>:

Note that by taking mod N, we are only interested with shifts in the interval $0 \le m \le N - 1$.

$$\begin{split} z[n] &= x[(n-m) \mod N] \\ Z[k] &= \sum_{n=0}^{N-1} z[n] e^{-j\frac{2\pi}{N}kn} \\ &= \sum_{n=0}^{N-1} x[\underbrace{(n-m)}_{l} \mod N] e^{-j\frac{2\pi}{N}kn} \\ &= \sum_{l=0}^{N-1} x[l] e^{-j\frac{2\pi}{N}k((l+m) \mod N)} \\ &= e^{-j\frac{2\pi}{N}km} \sum_{l=0}^{N-1} x[l] e^{-j\frac{2\pi}{N}kl} \quad \text{since } e^{-j\frac{2\pi}{N}kn} \text{ is periodic with period } N \text{ in both } k, n \\ &= e^{-j\frac{2\pi}{N}km} X[k]. \end{split}$$

3) Duality

$$z[n] = X[n]$$

$$Z[k] = \sum_{n=0}^{N-1} z[n]e^{-j\frac{2\pi}{N}kn} = \sum_{n=0}^{N-1} X[n]e^{-j\frac{2\pi}{N}kn}$$

$$Z[(-k) \mod N] = \sum_{n=0}^{N-1} X[n]e^{j\frac{2\pi}{N}kn} = Nx[k]$$

$$Z[k] = Nx[-k \mod N].$$

4) Symmetries

(i) $z[n] = x^*[n]$

$$Z[k] = \sum_{n=0}^{N-1} z[n] e^{-j\frac{2\pi}{N}kn}$$

= $\sum_{n=0}^{N-1} x^*[n] e^{-j\frac{2\pi}{N}kn}$
= $\left(\sum_{n=0}^{N-1} x[n] e^{j\frac{2\pi}{N}kn}\right)^*$
= $X^*[-k \mod N]$

(ii) $x_{ep}[n] = \frac{1}{2} \{ x[n] + x^*[(-n) \mod N] \}$

$$\begin{aligned} X_{ep}[k] &= \frac{1}{2} \{ \text{DFT}\{x[n]\} + \text{DFT}\{x^*[(-n) \mod N]\} \} \\ &= \frac{1}{2} \{ X[k] + X^*[k] \} \\ &= \text{Re}\{X[k]\} \end{aligned}$$

(iii) $x_{op}[n] = \frac{1}{2} \{ x[n] - x^*[(-n) \mod N] \}$ $X_{ep}[k] = \frac{1}{2} \{ DFT\{x[n]\} - DFT\{x^*[(-n) \mod N]\} \}$ $= \frac{1}{2} \{ X[k] - X^*[k] \}$ $= j \operatorname{Im} \{ X[k] \}$

5) Cyclic convolution

$$\begin{split} z[n] &= \sum_{n=0}^{N-1} x[m] y[(n-m) \mod N] \\ Z[k] &= \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} x[m] y[(n-m) \mod N] e^{-j\frac{2\pi}{N}kn} \\ &= \sum_{m=0}^{N-1} x[m] \sum_{n=0}^{N-1} y[(n-m) \mod N] e^{-j\frac{2\pi}{N}kn} \\ &= \sum_{m=0}^{N-1} x[m] Y[k] e^{-j\frac{2\pi}{N}km} \\ &= Y[k] \sum_{m=0}^{N-1} x[m] e^{-j\frac{2\pi}{N}km} \\ &= Y[k] X[k]. \end{split}$$