ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 14
Solution 7

Signal Processing for Communications
April 4, 2011,INF 213 - 10:15am-12:00

Problem 1 (The world of Ideals). We want to derive a relation between $X\left(e^{j 2 \pi f}\right)$ and the DTFT of the downsampled signal, i.e $X_{d}\left(e^{j 2 \pi f}\right)$. We do this in two steps.
Step 1: Consider first the signal

$$
x_{p}[n]=\left\{\begin{aligned}
x[n] & n=4 k, k \in \mathbb{Z} \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Now, observe that

$$
\begin{aligned}
x_{p}[n] & =\frac{1}{4}\left(x[n]+\left(e^{j \frac{2 \pi}{4}}\right)^{n} x[n]+\left(e^{j \frac{2 \pi}{4} 2}\right)^{n} x[n]+\left(e^{j \frac{2 \pi}{4} 3}\right)^{n} x[n]\right) \\
& =\frac{1}{4} \sum_{k=0}^{3} e^{j \frac{2 \pi}{4} k n} x[n]
\end{aligned}
$$

Note that the complex exponentials are periodic with period 4, so it is sufficient to check that the above relation holds for $n=0,1,2,3$.
Using the frequency shift property of the DTFT, we get

$$
X_{p}\left(e^{j 2 \pi f}\right)=\frac{1}{4} \sum_{k=0}^{3} X\left(e^{j\left(2 \pi f-\frac{2 \pi}{4} k\right)}\right)
$$

Step 2 : Removing all zeros introduced in $x_{p}[n]$, we get $x_{d}[n]$. Hence,

$$
x_{d}[n]=x_{p}[4 n]
$$

So,

$$
\begin{aligned}
X_{d}\left(e^{j 2 \pi f}\right) & =\sum_{n \in \mathbb{Z}} x_{d}[n] e^{-j 2 \pi f n} \\
& =\sum_{n \in \mathbb{Z}} x_{p}[4 n] e^{-j 2 \pi f n} \\
& =\sum_{m=4 n} x_{p}[m] e^{-j 2 \pi f \frac{m}{4}} \\
& =\sum_{m=4 n, n \in \mathbb{Z}} x_{p}[m] e^{-j 2 \pi f \frac{m}{4}} \\
& =X_{p}\left(e^{j \frac{2 \pi f}{4}}\right)
\end{aligned}
$$

Where (a) follows from the fact that $x_{p}[m]=0$, for $m \neq$ integer multiple of 4 .
So overall, we obtained

$$
X_{d}\left(e^{j 2 \pi f}\right)=\frac{1}{4} \sum_{t=0}^{3} X\left(e^{j\left(\frac{2 \pi f}{4}-\frac{2 \pi}{4} k\right)}\right)
$$

Now, we want to derive a relationship between $X_{d}\left(e^{j 2 \pi f)}\right.$ and the DTFT of the upsampled signal, i.e $X_{u}\left(e^{j 2 \pi f}\right)$.

$$
\begin{aligned}
X_{u}\left(e^{j 2 \pi f}\right) & =\sum_{n \in \mathbb{Z}} x_{u}[n] e^{-j 2 \pi f n} \\
& =\sum_{n \in \mathbb{Z}}\left(\sum_{k \in \mathbb{Z}} x_{d}[k] \delta[n-4 k]\right) e^{-j 2 \pi f n} \\
& =\sum_{k \in \mathbb{Z}} x_{d}[k] \sum_{n \in \mathbb{Z}} \delta[n-4 k] e^{-j 2 \pi f n} \\
& =\sum_{k \in \mathbb{Z}} x_{d}[k] e^{-j 2 \pi f 4 k} \\
& =X_{d}\left(e^{j 2 \pi f 4}\right)
\end{aligned}
$$

The cascade of downsampling and upsampling operations yields:

$$
X_{u}\left(e^{j 2 \pi f}\right)=\frac{1}{4} \sum_{k=0}^{3} X\left(e^{j\left(2 \pi f-\frac{2 \pi}{4} k\right)}\right)
$$

The signals are drawn in figures 1-5 at the end of the solutions.

Problem 2 (Fractional Delay).
a) The system represents a "fractional" delay. Hence,

$$
y[n]=\sin \left(2 \pi f_{0}(n-d)+\phi_{0}\right)
$$

i.e. $y[n]$ is "delayed" by d time units. The simplest way to compute $y[n]$ is to transform into the Fourier domain, to multiply, and to transform back.
b) We have $h[n]=\delta[n-d]$. Since this impulse response is absolutely summable, the system is BIBO stable. If $d \geq 0$ then the system is causal, otherwise it is not.
c) If d is not an integer, then we get by direct integration :

$$
\begin{aligned}
h[n] & =\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-j 2 \pi f d} e^{j 2 \pi f n} \\
& =\left.\frac{1}{2 j \pi(n-d)} e^{j 2 \pi(n-d)}\right|_{-\frac{1}{2}} ^{\frac{1}{2}} \\
& =\operatorname{sinc}(n-d)
\end{aligned}
$$

In this case the impulse response is not absolutely summable, so the system is not BIBO stable. The system is never causal.

Problem 3.

$$
H(z)=\frac{\left(1-\frac{1}{3} z^{-1}\right)}{\left(1+\frac{1}{2} z^{-1}\right)\left(1-z^{-1}+\frac{1}{2} z^{-2}\right)}
$$

1)

$$
\begin{aligned}
H(z)=\frac{Y(z)}{X(z)} & =\frac{1-\frac{1}{3} z^{-1}}{1-z^{-1}+\frac{1}{2} z^{-2}+\frac{1}{2} z^{-1}-\frac{1}{2} z^{-2}+\frac{1}{4} z^{-3}} \\
& =\frac{1-\frac{1}{3} z^{-1}}{1-\frac{1}{2} z^{-1}+\frac{1}{4} z^{-3}}
\end{aligned}
$$

The difference equation is :

$$
y[n]-\frac{1}{2} y[n-1]+y[n-3]=x[n]-\frac{1}{3} x[n-1]
$$

2) Note that the poles are located on the circles $|z|=\frac{1}{2}$ and $|z|=\frac{1}{\sqrt{2}}$. See Fig. 6.

We can associate three regions with $\mathrm{H}(\mathrm{z})$.
$\mathrm{ROC}_{1}:|z|>\frac{1}{\sqrt{2}}$. See Fig. 7.
$\mathrm{ROC}_{2}:|z|<\frac{1}{2}$. See Fig 8.
$\mathrm{ROC}_{3}: \frac{1}{2}<|z|<\frac{1}{\sqrt{2}}$. See Fig 9 .
ROC_{1} includes the unit circle, so it is a stable system. Moreover, ROC_{1} extends outward from $|z|=\frac{1}{\sqrt{2}}$ including ∞. Hence it is a causal system.
On the other hand ROC_{2} does not include the unit circle, hence it is not stable. Since ROC_{2} is the inside of a circle, it cannot be causal either. Similarly, ROC_{3} is neither stable, nor causal.
3) The Fourier transform converges in ROC_{1}, see Fig. 10 .
4)

$$
\begin{array}{r}
H(z)=\frac{\left(1-\frac{1}{3} z^{-1}\right)}{\left(1+\frac{1}{2} z^{-1}\right)\left(1-z^{-1}+\frac{1}{2} z^{-2}\right)} \\
\mathrm{ROC}_{1}:|z|>\frac{1}{\sqrt{2}} \\
\frac{\left(1-\frac{1}{3} z^{-1}\right)}{\left(1+\frac{1}{2} z^{-1}\right)\left(1-z^{-1}+\frac{1}{2} z^{-2}\right)}=\frac{A}{\left(1+\frac{1}{2} z^{-1}\right)}+\frac{B+C z^{-1}}{\left(1-z^{-1}+\frac{1}{2} z^{-2}\right)} \\
\left.H(z)\left(1+\frac{1}{2} z^{-1}\right)\right|_{z=-\frac{1}{2}}=\frac{1-\frac{1}{3}(-2)}{1-(-2)+\frac{1}{2}(-2)^{2}}=\frac{1}{3} \\
1-\frac{1}{3} z^{-1}=A\left(1-z^{-1}+\frac{1}{2} z^{-2}\right)+\left(1+\frac{1}{2} z^{-1}\right)\left(B+C z^{-1}\right) \\
=(A+B)+\left(-A+C+\frac{B}{2}\right) z^{-1}+\left(\frac{A}{2}+\frac{C}{2} z^{-2}\right)
\end{array}
$$

$\Rightarrow B=\frac{2}{3}$
$\Rightarrow C=-\frac{1}{3}$
Hence, the partial fraction expansion gives :

$$
H(z)=\frac{\frac{1}{3}}{1+\frac{1}{2} z^{-1}}+\frac{\frac{2}{3}\left(1-\frac{1}{2} z^{-1}\right)}{1-z^{-1}+\frac{1}{2} z^{-2}}
$$

Since $H(z)$ is causal inside ROC_{1}, the inverse is given by :

$$
h[n]=\frac{1}{3}\left(\frac{1}{2}\right)^{n} u[n]+\frac{2}{3}\left(\frac{1}{\sqrt{2}}\right)^{n} \cos \left(\frac{\pi}{4} n\right) u[n]
$$

$\mathrm{ROC}_{2}:|z|<\frac{1}{2}$
You need further to expand the second fraction with partial fraction expansion.

$$
\frac{\left(1-\frac{1}{2} z^{-1}\right)}{\left(1-z^{-1}+\frac{1}{2} z^{-2}\right)}=\frac{D}{\left(1-\frac{\sqrt{2}}{2} e^{\left(j \frac{\pi}{4}\right)} z^{-1}\right)}+\frac{E}{\left(1-\frac{\sqrt{2}}{2} e^{\left(-j \frac{\pi}{4}\right)} z^{-1}\right)}
$$

$\Rightarrow D=2-\sqrt{2} e^{\left(-j \frac{\pi}{4}\right)}$
$\Rightarrow E=2-\sqrt{2} e^{\left(j \frac{\pi}{4}\right)}$
So

$$
H(z)=\frac{\frac{1}{3}}{\left(1+\frac{1}{2} z^{-1}\right)}+\frac{\frac{2}{3} D}{\left(1-\frac{\sqrt{2}}{2} e^{\left(j \frac{\pi}{4}\right)} z^{-1}\right)}+\frac{\frac{2}{3} E}{\left(1-\frac{\sqrt{2}}{2} e^{\left(-j \frac{\pi}{4}\right)} z^{-1}\right)}
$$

Since $H(z)$ is anti-causal inside ROC_{2}, the inverse is given by:

$$
\begin{aligned}
h[n] & =-\frac{1}{3}\left(\frac{1}{2}\right)^{n} u[-n-1]+\frac{2}{3} D\left(\frac{\sqrt{2}}{2} e^{\left(j \frac{\pi}{4}\right)}\right)^{n} u[-n-1]+\frac{2}{3} E\left(\frac{\sqrt{2}}{2} e^{\left(-j \frac{\pi}{4}\right)}\right)^{n} u[-n-1] \\
& =-\frac{1}{3}\left(\frac{1}{2}\right)^{n} u[-n-1]+\frac{4}{3} R e\left\{\left(2-\sqrt{2} e^{\left(-j \frac{\pi}{4}\right)}\right)\left(\frac{\sqrt{2}}{2} e^{\left(j \frac{\pi}{4}\right)}\right)^{n}\right\} u[-n-1]
\end{aligned}
$$

$\mathrm{ROC}_{3}: \frac{1}{2}<|z|<\frac{1}{\sqrt{2}}$
Using the previous partial fraction expansion, we see that the first fraction of $H(z)$ is causal, the other two fractions are anti-causal. Hence,

$$
h[n]=\frac{1}{3}\left(\frac{1}{2}\right)^{n} u[n]+\frac{4}{3} R e\left\{\left(2-\sqrt{2} e^{\left(-j \frac{\pi}{4}\right)}\right)\left(\frac{\sqrt{2}}{2} e^{\left(j \frac{\pi}{4}\right)}\right)^{n}\right\} u[-n-1]
$$

5) We want to find $G(z)$ such that $H(z) G(z)=1$
i)

$$
G(z)=\frac{\left(1+\frac{1}{2} z^{-1}\right)\left(1-z^{-1}+\frac{1}{2} z^{-2}\right)}{\left(1-\frac{1}{3} z^{-1}\right)}
$$

See Fig. 11. We found that $H(z)$ is both stable and causal inside ROC_{1}. Similarly we can deduce that $G(z)$ is both causal and stable for the region $\operatorname{ROC}_{G}:|z|>\frac{1}{3}$. Now, we also need to ensure that $\mathrm{ROC}_{1} \cap \mathrm{ROC}_{G} \neq \varnothing$, which holds in this case. The DTFT is plotted in Fig. 12.

Figure 6: Pole-zero plot

Figure 7: $\mathrm{ROC}_{1}:|z|>\frac{1}{\sqrt{2}}$

Figure 8: $\mathrm{ROC}_{2}:|z|<\frac{1}{2}$

Figure 9: $\mathrm{ROC}_{3}: \frac{1}{2}<|z|<\frac{1}{\sqrt{(2)}}$

Figure 10: Magnitude response of $\left|H\left(e^{j 2 \pi f}\right)\right|$

Figure 11: Pole-zero plot with ROC for $G(z)$

Figure 12: Magnitude response for $G(z)$
ii)

Problem 4. (FIR Approximation of the Hilbert Filter/Oppenheim Problems 7.32/7.33/7.52)

1) i)

$$
\begin{aligned}
H_{s}\left(e^{j 2 \pi f}\right) & =\sum_{n=0}^{M} h_{s}[n] e^{-j 2 \pi f n} \\
& =\sum_{n=0}^{\frac{M-1}{2}} h_{s}[n] e^{-j 2 \pi f n}+\sum_{n=\frac{M+1}{2}}^{M} h_{s}[n] e^{-j 2 \pi f n} \\
& =\sum_{n=0}^{\frac{M-1}{2}} h_{s}[n] e^{-j 2 \pi f n}+\sum_{m=0}^{\frac{M-1}{2}} h_{s}[M-m] e^{-j 2 \pi f(M-m)} \\
& =e^{-j 2 \pi f \frac{M}{2}} \sum_{n=0}^{\frac{M-1}{2}} h_{s}[n] e^{j 2 \pi f\left(\frac{M}{2}-n\right)}+\sum_{n=0}^{\frac{M-1}{2}} h_{s}[n] e^{-j 2 \pi f\left(\frac{M}{2}-n\right)} \\
& =e^{-j 2 \pi f \frac{M}{2}} \sum_{n=0}^{\frac{M-1}{2}} 2 h_{s}[n] \cos \left(2 \pi f\left(\frac{M}{2}-n\right)\right) \\
& =e^{-j 2 \pi f \frac{M}{2}} \sum_{n=1}^{\frac{M+1}{2}} 2 h_{s}\left[\frac{M+1}{2}-n\right] \cos \left(2 \pi f\left(n-\frac{1}{2}\right)\right)
\end{aligned}
$$

ii) Similarly, by considering the fact that $h[n]=0$ for $n<0$ and $n>M$, and the fact that $\mathrm{h}[\mathrm{n}]=\mathrm{h}[\mathrm{M}-\mathrm{n}]$ for $n=0, \ldots, \frac{M-1}{2}$, we can derive:

$$
H_{a s}\left(e^{j 2 \pi f}\right)=j e^{j 2 \pi f \frac{M}{2}} \sum_{k=1}^{\frac{M+1}{2}} 2 h_{a s}\left[\frac{M+1}{2}-k\right] \sin \left(2 \pi f\left(k-\frac{1}{2}\right)\right)
$$

2) i) The Hilbert transform is given by:

$$
H_{h}\left(e^{j 2 \pi f}\right)=\left\{\begin{aligned}
e^{j \frac{\pi}{2}} & -\frac{1}{2}<f<0 \\
e^{-j \frac{\pi}{2}} & 0<f<\frac{1}{2}
\end{aligned}\right.
$$

Hence, the delayed Hilbert transform with generalized linear phase can be defined as:

$$
H_{d}\left(e^{j 2 \pi f}\right)=\left\{\begin{array}{rl}
e^{j \frac{\pi}{2}-j 2 \pi f d} & -\frac{1}{2}<f<0 \\
e^{-j \frac{\pi}{2}-j 2 \pi f d} & 0<f<\frac{1}{2}
\end{array}\right.
$$

The magnitude and phase responses are plotted in Fig. 13, and Fig. 14 respectively.
ii) Note that the phase response has a π radian phase shift at $f=0$. This is because the above Hilbert filter requires a zero at $z=1$. This implies that the filter coefficients sum up to 0 . Hence the filter should be antisymmetric. So we could only use $h_{a s}[n]$ to approximate $h_{d}[n]$.
iii)

$$
\begin{aligned}
h_{d}[n] & =\int_{-\frac{1}{2}}^{\frac{1}{2}} H_{d}\left(e^{j 2 \pi f}\right) e^{j 2 \pi f n} d f \\
& =\int_{-\frac{1}{2}}^{0} e^{j\left(\frac{\pi}{2}-2 \pi f d\right)} e^{j 2 \pi f n} d f+\int_{0}^{\frac{1}{2}} e^{-j\left(\frac{\pi}{2}+2 \pi f d\right)} e^{j 2 \pi f n} d f \\
& =e^{j \frac{\pi}{2}} \int_{-\frac{1}{2}}^{0} e^{j 2 \pi f(n-d)} d f+e^{-j \frac{\pi}{2}} \int_{0}^{\frac{1}{2}} e^{j 2 \pi f(n-d)} d f \\
& =\left\{\begin{array}{rrr}
\frac{1}{\pi(n-d)}\left[1+\sin \left(\pi(n-d)-\frac{\pi}{2}\right)\right] & n \neq d \\
0 & n=d
\end{array}\right. \\
& =\left\{\begin{array}{rll}
\frac{1}{\pi(n-d)}[1-\cos (\pi(n-d))] & n \neq d \\
0 & n=d
\end{array}\right. \\
& =\left\{\begin{array}{lll}
\frac{2 \sin ^{2}\left(\frac{\pi}{2}(n-d)\right)}{\pi(n-d)} & n \neq d & n=d
\end{array}\right.
\end{aligned}
$$

We observe that $h_{d}[n]$ is symmetric around $n=d$. Moreover, from part (ii) we also know that $h_{a s}[n]$ can be used to approximate $h_{d}[n]$ as a causal, FIR filter with generalized linear phase. Hence $d=\frac{M}{2}$ since $\frac{M}{2}$ is the axis of symmetry of $h_{a s}[n]$.
iv) From Parseval, we have

$$
\epsilon^{2}=\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|H\left(e^{j 2 \pi f}\right)-H_{d}\left(e^{j 2 \pi f}\right)\right|^{2} d f=\sum_{n \in \mathbb{Z}}\left|h_{d}[n]-h[n]\right|^{2}
$$

We know that due to the windowing operation $h[n]=0$ for $n<0$ and $n>M$. As a result to minimize ϵ^{2}, the best thing we could do is to select $h[n]=h_{d}[n]$ for $0 \leq n \leq M$. Therefore the optimal window which minimizes ϵ^{2} is the rectangular window, i.e :

$$
w[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}
$$

Problem 5. Note that the solution is given in terms of the "w" variable notation for DTFT!

$$
\begin{aligned}
z[n] & =x[n] * y[n], z[n]=\frac{1}{2 \pi} \int_{0}^{2 \pi} 2 e^{j \omega} e^{j \omega n} d \omega \\
& \Rightarrow Z\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) Y\left(e^{j \omega}\right) . \\
X\left(e^{j \omega}\right) & =\frac{1}{2} 2 \pi\left[e^{j \frac{\pi}{17}} \delta\left(\omega-\frac{\pi}{49}\right)+e^{-j \frac{\pi}{17}} \delta\left(\omega+\frac{\pi}{49}\right)\right] \\
Y\left(e^{j \omega}\right) & =\sum_{n=-49}^{49} \frac{(49-n)}{49} e^{-j \omega n} \\
z[n] & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\sum_{n^{=}-49}^{49} \frac{\left(49-n^{\prime}\right)}{49} e^{-j \omega n^{\prime}}\right) \frac{1}{2} 2 \pi\left[e^{j \frac{\pi}{17}} \delta\left(\omega-\frac{\pi}{49}\right)+e^{\left.-j \frac{\pi}{17} \delta\left(\omega+\frac{\pi}{49}\right)\right] e^{j \omega n} d \omega}\right. \\
& =\frac{1}{2 \pi} \frac{1}{2} e^{j \frac{\pi}{17}}\left(\sum_{n^{\prime}=-49}^{49} \frac{\left(49-n^{\prime}\right)}{49} e^{j \frac{\pi}{49}} n^{\prime}\right) e^{j \frac{\pi}{49} n} 2 \pi+\frac{1}{2 \pi} \frac{1}{2} e^{-j \frac{\pi}{17}}\left(\sum_{n^{\prime}=-49}^{49} \frac{\left(49-n^{\prime}\right)}{49} e^{j \frac{\pi}{49} n^{\prime}}\right) e^{-j \frac{\pi}{49} n} 2 \pi
\end{aligned}
$$

Let a be $\sum_{n^{\prime}=-49}^{49} \frac{49-n^{\prime}}{49} e^{-j \frac{\pi}{49} n^{\prime}}$ and a^{*} be $\sum_{n^{\prime}=-49}^{49} \frac{49-n^{\prime}}{49} e^{j \frac{\pi}{49} n^{\prime}}$. Then we have :

$$
z[n]=\frac{1}{2} e^{j \frac{\pi}{17}} a e^{j \frac{\pi}{49} n}+\frac{1}{2} e^{j \frac{\pi}{17}} a^{*} e^{-\frac{\pi}{49} n}
$$

Now we only need to compute a.

$$
a=\sum_{n^{\prime}=0}^{98} \frac{n^{\prime}}{49} e^{-j \frac{\pi}{49}\left(-n^{\prime}+49\right)}=\frac{e^{-j \pi}}{49} \sum_{n^{\prime}=0}^{98} n^{\prime} e^{j \frac{\pi}{49} n^{\prime}}
$$

We know from hw1 that

$$
\begin{aligned}
\sum_{n=0}^{k} \alpha^{n} & =\frac{1-\alpha^{k+1}}{1-\alpha} \\
\sum_{k=1}^{n} k x^{k} & =x \sum_{k=1}^{n} k x^{k-1} \\
& =x \sum_{k=1}^{n} \frac{d x^{k}}{d x} \\
& =x \frac{d}{d x}\left(\sum_{k=1}^{n} x^{k}\right) \text { by linearity of differentiation } \\
& =x \frac{d}{d x}\left(\frac{1-x^{n+1}}{1-x}-1\right) \\
& =x \frac{-(n+1) x^{n}(1-x)-\left(1-x^{n+1}\right)(-1)}{(1-x)^{2}} \\
& =\frac{x-(n+1) x^{n+1}+n x^{n+2}}{(1-x)^{2}}
\end{aligned}
$$

So,

$$
a=\frac{e^{-j \pi}}{49} \frac{e^{j \frac{\pi}{49}}-(99) e^{j \frac{\pi}{49} 99}+98 e^{j \frac{\pi}{49} 100}}{\left(1-e^{j \frac{\pi}{49}}\right)^{2}}
$$

Figure 1: Original DTFT

Figure 3: DTFT Using the cow Pass Filter

Figure S: DTFT Using the (thigh Pass filter

Figure 23: Magnitude Response of the filter

$\begin{aligned} \text { Figure 2: } & \text { DTFT After Up and } \\ & \text { Dawn Sampling }\end{aligned}$

Figure 4: DTFT Using the Band Pars fills

Figwe 44: Phase Response of the Filler

