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Problem 1. Write
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Problem 2. (a) M = 1 + α(K − 1).

(b) It’s straight forward.

(c) The expression E[length(W )] changes to E[length(W ′)] = E[length(W )] + p. The
expression H(W ) changes to H(W ) + p log p −

∑
x px log(px) = H(W ) + −pH(X).

Finally,

H(W ′) = H(W ) + pH(X)

= H(X)E[length(W )] +H(X)p

= H(X)[E[length(W ) + p]

= H(X)E[length(W ′)].

Problem 3. The decoding is “lalalal“.

Problem 4. (a) log(n+ 1) bits are needed to be reserved for the description of k.
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(b) We need dlog
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e bits to describe which of the N sequences we are decoding with.

(c)
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So
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(d)
l(xn)− l∗(xn)
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lim
n→∞
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= 0 (6)
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