ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Solution 5

Problem 1. Write

$$
\begin{aligned}
1 & =\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& \leq(n+1) \max _{k}\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

Let $a_{k}=\binom{n}{k} p^{k}(1-p)^{n-k}$ and we have $\frac{a_{k}}{a_{k-1}}=\frac{p(n-k+1)}{k(1-p)}$ so the maximum of a_{k} is when $k=n p$. By letting $p=\frac{k}{n}$, we have

$$
\begin{aligned}
1 & \leq(n+1)\binom{n}{n p}(n p)^{k}(1-p)^{n(1-p)} \\
& =(n+1)\binom{n}{k}(k)^{k}\left(1-\frac{k}{n}\right)^{n\left(1-\frac{k}{n}\right)} \\
& =(n+1)\binom{n}{k} 2^{-n h_{2}\left(\frac{k}{n}\right)}
\end{aligned}
$$

Problem 2. (a) $M=1+\alpha(K-1)$.
(b) It's straight forward.
(c) The expression $E[\operatorname{length}(W)]$ changes to $E\left[\operatorname{length}\left(W^{\prime}\right)\right]=E[\operatorname{length}(W)]+p$. The expression $H(W)$ changes to $H(W)+p \log p-\sum_{x} p x \log (p x)=H(W)+-p H(X)$. Finally,

$$
\begin{aligned}
H\left(W^{\prime}\right) & =H(W)+p H(X) \\
& =H(X) E[\operatorname{length}(W)]+H(X) p \\
& =H(X)[E[\operatorname{length}(W)+p] \\
& =H(X) E\left[\operatorname{length}\left(W^{\prime}\right)\right]
\end{aligned}
$$

Problem 3. The decoding is "lalalal".
Problem 4. (a) $\log (n+1)$ bits are needed to be reserved for the description of k.

$$
N=\binom{n}{k}
$$

(b) We need $\left\lceil\log \binom{n}{k}\right\rceil$ bits to describe which of the N sequences we are decoding with.
(c)

$$
\begin{align*}
l\left(x^{n}\right) & =\lceil\log (n+1)\rceil+\left\lceil\log \binom{n}{k}\right\rceil \tag{1}\\
& \leq \log (n)+\log \binom{n}{k}+3
\end{align*}
$$

Since $\binom{n}{k} \leq 2^{n H\left(\frac{k}{n}\right)} \sqrt{\frac{n}{\pi k(n-k)}}$

$$
\begin{align*}
\log \binom{n}{k} & \leq \log \left(2^{n H\left(\frac{k}{n}\right)} \sqrt{\frac{n}{\pi k(n-k)}}\right) \tag{2}\\
& =n H\left(\frac{k}{n}\right)+\log \sqrt{\frac{n}{\pi k(n-k)}}
\end{align*}
$$

So

$$
\begin{align*}
l\left(x^{n}\right) & \leq \log n+n H\left(\frac{k}{n}\right)-\frac{1}{2} \log n+\log \sqrt{\frac{n^{2}}{\pi k(n-k)}}+3 \tag{3}\\
& =\frac{1}{2} \log n+n H\left(\frac{k}{n}\right) \underbrace{-\frac{1}{2} \log \left(\pi \frac{k}{n} \times \frac{n-k}{n}\right)+3}_{\text {does not grow with } n} \tag{4}
\end{align*}
$$

(d)

$$
\begin{gather*}
\frac{l\left(x^{n}\right)-l^{*}\left(x^{n}\right)}{l^{*}\left(x^{n}\right)} \leq \frac{\frac{1}{2} \log n+n H\left(\frac{k}{n}\right)+O(c)-n H\left(\frac{k}{n}\right)}{n H\left(\frac{k}{n}\right)}=\frac{1 / 2 \log n}{n H\left(\frac{k}{n}\right)}+\frac{O(c)}{n H\left(\frac{k}{n}\right)} \tag{5}\\
\lim _{n \rightarrow \infty} \frac{l\left(x^{n}\right)-l^{*}\left(x^{n}\right)}{l^{*}\left(x^{n}\right)}=0 \tag{6}
\end{gather*}
$$

