ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 27
Homework 12 (Graded DUE 21-12-2010)

Information Theory and Coding
December 14, 2010, SG1 - 15:15-17:00

Problem 1. (a) They should observe that by increasing the length, the error probability reduces.
(b) They should see an approximate line with β being the slope of the line. Ideally β should be $\frac{1}{2}$ but they see something less.

Problem 2. It's a straightforward program.
Problem 3. (a) All the information that we have at the output is the bits that are not erased. A little thought shows that the equation $x_{I}=u G_{I}$ is just the most general system of equations that we can have using the available information and we can not do better than this.
(b) If $\operatorname{rank}\left(G_{I}\right)<|I|$, then there is more that one solution to the equation $x_{I}=u G_{I}$, and all these solutions are equiprobable. So in terms of the MAP decoding we have ambiguity in the decoded vector.
(c) It's a simple program, they can only check the decoding error by looking at the rank of G_{I} at each time. They should note that ideally p_{e} is less than what they got in problem 1 (i.e., the upper-bound on the block error probability of the MAP decoder.)
(d) Let $G_{n}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]^{\otimes n}$. It can be proven by induction that $G_{n}^{-1}=G_{n}$. We have $x=u G_{n}$ and something important to note here is that the vector u is a N dimensional vector consisting of both the information bits and the fixed bits (which we fix them to zero and are known both to the encoder and decoder). Let I and \bar{I} be the set of non-erased and erased bits respectively. Also let $G_{n, I}$ and $G_{n, \bar{I}}$ be the part of G_{n} with rows in I and \bar{I} respectively. We have,

$$
x=u G_{n} \Rightarrow u=x G_{n} \Rightarrow u=x_{I} G_{n, I}+x_{\bar{I}} G_{n, \bar{I}} \Rightarrow u+x_{I} G_{n, I}=x_{\bar{I}} G_{n, \bar{I}}
$$

Note that $u+x_{I} G_{n, I}$ is known to the decoder and we denote it by u^{\prime}. Assuming $u^{\prime}=\left(u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{N}^{\prime}\right)$. To decode the i-th information bit (according to the SC decoder), the decoder has to solve the following set of equations.

$$
\begin{equation*}
\left(u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{i-1}^{\prime}, u_{i}^{\prime}, *, *, \cdots, *\right)=x_{\bar{I}} G_{n, \bar{I}}, \tag{1}
\end{equation*}
$$

where the value of the bits $u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{i-1}^{\prime}$ are presumably known to the decoder and the value of the bits $u_{i+1}^{\prime}, \cdots, u_{N}^{\prime}$ are not known to the decoder yet (hence denoted by $*$ in above). So the decoder has to find u_{i} with this available information. A little thought shows that the decoder can decode u_{i} iff the i-th column of $G_{n, \bar{I}}$ is linearly dependent with the first $i-1$ columns of $G_{n, \bar{I}}$. Intuitively, if the i-th column is in the span of the first $i-1$ columns of $G_{n, \bar{I}}$, then a linear combination of these $i-1$ columns will result the i-th column and if we perform the same linear combination on the bits $u_{1}^{\prime}, \cdots, u_{i-1}^{\prime}$ we should get u_{i}. So the decoder has an error iff the i-th column of $G_{n, \bar{I}}$ is not in the span of the first $i-1$ columns of $G_{n, \bar{I}}$. The value of u_{i} in case of no error can be easily found by writing the set of linear equations in (1) in terms of the row-echelon form of $G_{n, \bar{I}}$. The rest is similar to part (c).

