ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 27	Information Theory and Coding
Homework 12 (Graded DUE 21-12-2010)	December 14, 2010, SG1 – 15:15-17:00

- **Problem 1.** (a) They should observe that by increasing the length, the error probability reduces.
 - (b) They should see an approximate line with β being the slope of the line. Ideally β should be $\frac{1}{2}$ but they see something less.

Problem 2. It's a straightforward program.

- **Problem 3.** (a) All the information that we have at the output is the bits that are not erased. A little thought shows that the equation $x_I = uG_I$ is just the most general system of equations that we can have using the available information and we can not do better than this.
 - (b) If rank $(G_I) < |I|$, then there is more that one solution to the equation $x_I = uG_I$, and all these solutions are equiprobable. So in terms of the MAP decoding we have ambiguity in the decoded vector.
 - (c) It's a simple program, they can only check the decoding error by looking at the rank of G_I at each time. They should note that ideally p_e is less than what they got in problem 1 (i.e., the upper-bound on the block error probability of the MAP decoder.)
 - (d) Let $G_n = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{\otimes n}$. It can be proven by induction that $G_n^{-1} = G_n$. We have $x = uG_n$ and something important to note here is that the vector u is a N dimensional vector consisting of both the information bits and the fixed bits (which we fix them to zero and are known both to the encoder and decoder). Let I and \overline{I} be the set of non-erased and erased bits respectively. Also let $G_{n,I}$ and $G_{n,\overline{I}}$ be the part of G_n with rows in I and \overline{I} respectively. We have,

$$x = uG_n \Rightarrow u = xG_n \Rightarrow u = x_IG_{n,I} + x_{\bar{I}}G_{n,\bar{I}} \Rightarrow u + x_IG_{n,I} = x_{\bar{I}}G_{n,\bar{I}}.$$

Note that $u + x_I G_{n,I}$ is known to the decoder and we denote it by u'. Assuming $u' = (u'_1, u'_2, \dots, u'_N)$. To decode the *i*-th information bit (according to the SC decoder), the decoder has to solve the following set of equations.

$$(u'_1, u'_2, \cdots, u'_{i-1}, u'_i, *, *, \cdots, *) = x_{\bar{I}} G_{n,\bar{I}},$$
(1)

where the value of the bits $u'_1, u'_2, \dots, u'_{i-1}$ are presumably known to the decoder and the value of the bits u'_{i+1}, \dots, u'_N are not known to the decoder yet (hence denoted by * in above). So the decoder has to find u_i with this available information. A little thought shows that the decoder can decode u_i iff the *i*-th column of $G_{n,\bar{I}}$ is linearly dependent with the first i - 1 columns of $G_{n,\bar{I}}$. Intuitively, if the *i*-th column is in the span of the first i - 1 columns of $G_{n,\bar{I}}$, then a linear combination of these i - 1columns will result the *i*-th column and if we perform the same linear combination on the bits u'_1, \dots, u'_{i-1} we should get u_i . So the decoder has an error iff the *i*-th column of $G_{n,\bar{I}}$ is not in the span of the first i - 1 columns of $G_{n,\bar{I}}$. The value of u_i in case of no error can be easily found by writing the set of linear equations in (1) in terms of the row-echelon form of $G_{n,\bar{I}}$. The rest is similar to part (c).