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Problem 1. (a) Let C be the set of all the codewords and assume that there is a code-
word x ∈ C such that the i-th bit of x is 1. Let C0 and C1 be the set of all the
codewords which have 0 and 1 in the i-th position respectively. It is easy to see that
C0 = x+ C1 and the proof follows.

(b) Let G be the generator matrix of the code which has size n × k. For 1 ≤ i ≤ n,
since the i-th row of G is non-zero, then there is a u ∈ {0, 1}k such that x = Gu is
non-zeros at the i-th position and thus by part (a) half the codewords have 1 in the
i-th position and half have 0.

(c) This follows easily from part (a).

Problem 2. (a) The number of n-dimensional vectors of weight at most e is equal to∑e
i=0

(
n
i

)
. Denote the set of all such vectors by E. For y ∈ H, if the decoder receives

x+ y, then it should decide that x was sent.

(b) Let the set of all the codewords be denoted by C and for x ∈ C let Sx be the set of
all the n-dimensional vectors that are decoded to x at the decoder. Clearly for two
distinct codewords x, y ∈ C, Sx and Sy are disjoint. We have

| ∪x∈C Sx| =
∑
x∈C

|Sx| ≥M
e∑
i=0

(
n

i

)
.

And on the other hand | ∪x∈C Sx|| is at most 2n (the number of all the n-dimensional
vectors).

Problem 3. (a) Let Gi be the matrix made by removing the last n − i columns of G
(define G0 = 0 and G0 consider it to be full rank). We have

P(Gi is full rank |Gi−1 is full rank ) = 1− 1

2n−i−1
,

for 0 ≤ i ≤ k − 1. This is because assuming Gi−1 is full rank, Gi is full rank only if
its i-th row is not contained in the row space of Gi−1 which has 2i−1 elements (since
Gi−1 is full rank). The proof now follows by noting that,

P(Gk is full rank ) =
k∏
i=1

P(Gi is full rank |Gi−1 is full rank ).

(b) Let

yα =
nα−1∏
i=1

(1− 1

2n−i
).



Assuming α < 1, we have

lim
n→∞

ln yα = lim
n→∞

nα−1∑
i=0

ln(1− 1

2n−i
)

= lim
n→∞

nα−1∑
i=0

1

2n−i

= 0.

Thus limn→∞ yα = 1 and with high probability G is full rank which means that the rate of
the linear code based on G is k

n
= α.

Problem 4. (a) Firstly, observe that

P(x = X(u)|G) = P(v = x+ uG|G) = 2−n.

and the rest follows from the law of total probability.

(b) We have

P(x = X(u), x′ = X(u′)) = P(x = X(u)|x′ = X(u′))P(x′ = X(u′)),

and by using part (a),

P(x = X(u), x′ = X(u′)) = P(x = X(u)|x′ = X(u′))2−n.

As a result, it remains to show that

P(x = X(u)|x′ = X(u′)) = 2−n.

We have
P(x = X(u)|x′ = X(u′)) = P((u+ u′)G = x+ x′).

Now, let I be the set of indices of which the vector u+ u′ is not zero (since u and u′

are distinct, I is non-empty). Assuming g1, · · · , gk are the rows of G, we have

P(x = X(u)|x′ = X(u′)) = P(
∑
i∈I

gi = x+ x′).

Now the rest follows from the fact that since the vector
∑

i∈I gi is again a vector whose
elements are i.i.d and {0, 1} valued with uniform probability, the above probability
is 2−n.

(c) Recall the random coding proof of the fact that there exist codes which achieve
capacity: In that proof, one generated M codewords X(1), · · · , X(M), each picked
independently according to the distribution p(x) = p(x1) · · · p(xn), and p is chosen to
maximize the mutual information (which is uniform here). The proof then proceeded
to analyze the probability of error by assuming thatX(m) is the transmitted sequence,
Y the received sequence and bounding the probability that for m′ 6= m, the pair
(X(m′), Y ) is jointly typical. What made the proof work was that for any m and
m′ 6= m, the codewords X(m) and X(m′) were chosen independently; i.e., that the
codewords were pairwise independent. The full independence of the M codewords was
not necessary in the proof. Here we also have the pair-wise independence property
(part (b)) as well so the proof follows similarly.
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