School of Computer and Communication Sciences

Problem 1. (i) Notice that the capacity of C_{2} can be computed via the expression

$$
\operatorname{Max} I(Y ; X)=\operatorname{Max}(H(Y)-H(Y \mid X))=\operatorname{Max}(H(Y)-H(Z))
$$

where the maximum is taken over all the possible distributions on the input alphabet. Therefore we only need to find the maximum of $H(Y)$ over all possible distribution on the set $\{-1,1\}$. To do this job we need to compute a non-trivial integral.
(ii) , Notice that this channel is in fact a BSC channel with error probability equal to $1-\Phi(\sqrt{P})$. So the capacity of this channel is equal to $1-H_{2}(1-\Phi(\sqrt{P}))$
Problem 2. (i) Since among the random variables of a given variance, the Gaussian random variable has the largest entropy, we can argue that

$$
h(X \mid Y=i) \leq \frac{1}{2} \log (2 \pi e \operatorname{Var}(X \mid Y=y)
$$

for every value of y. Therefore we can conclude that

$$
h(X \mid Y) \leq E_{Y}\left(\frac{1}{2} \log (2 \pi e \operatorname{Var}(X \mid Y))\right.
$$

On the other hand, since \log is a concave function, we can use the Jensen's inequality to conclude that $E_{Y}\left(\frac{1}{2} \log (2 \pi e \operatorname{Var}(X \mid Y))\right) \leq \frac{1}{2} \log \left(2 \pi e E_{Y}(\operatorname{Var}(X \mid Y))\right)$. This completes the proof of the first part.
(ii) Since the minimum mean square error estimator of os X, based on the observation $Y=y$ is $\hat{X}_{M M S E}(y)=E(X \mid Y=y)$, for every arbitrary estimator $\hat{X}(y)$ we have $E\left(E_{X}\left(\left(\hat{X}_{M M S E}-X\right)^{2}\right)\right)=E\left(E_{X}\left((E(X \mid Y)-X)^{2}\right)\right) \leq E\left((\hat{X}(y)-X)^{2}\right)$. But notice that $E_{X}\left((E(X \mid Y)-X)^{2}\right)=\operatorname{Var}(X \mid Y)$. So, $E\left(E_{X}\left((E(X \mid Y)-X)^{2}\right)=\right.$ $E_{Y}((\operatorname{Var}(X \mid Y)))$ and therefore, for every arbitrary estimator $\hat{X}(y)$ of X we have $E_{Y}\left(\operatorname{Var}(X \mid Y) \leq E\left(E_{X}\left((\hat{X}-X)^{2}\right)\right)\right.$. In particular, let $\hat{X}_{Y}(y)=\frac{a}{a+b} y$. For this particular $\hat{X}(y)$ we will find $E\left(E_{X}\left((\hat{X}-X)^{2}\right)\right)$. Since $Y=X+Z$ and X and Z are independent random variables, we have:

$$
\begin{aligned}
E\left(E_{X}\left((\hat{X}-X)^{2}\right)\right) & =E\left(E_{X}\left(\left(\frac{a}{a+b} Y-X\right)^{2}\right)\right) \\
& =E\left(E_{X}\left(\left(\frac{a}{a+b}(X+Z)-X\right)^{2}\right)\right) \\
& =E\left(E_{X}\left(\left(\frac{a}{a+b} Z-\frac{b}{a+b} X\right)^{2}\right)\right) \\
& =E\left(\frac{a^{2}}{(a+b)^{2}} E_{X}\left(Z^{2}\right)+\frac{b^{2}}{(a+b)^{2}} E_{X}\left(X^{2}\right)\right) \\
& =\frac{a^{2}}{(a+b)^{2}} E\left(E_{X}\left(Z^{2}\right)\right)+\frac{b^{2}}{(a+b)^{2}} E_{X}\left(X^{2}\right) \\
& =\frac{a^{2} b}{(a+b)^{2}}+\frac{a b^{2}}{(a+b)^{2}} \\
& =\frac{a b}{a+b} .
\end{aligned}
$$

Thus, $E_{Y}(\operatorname{Var}(X \mid Y)) \leq \frac{a b}{a+b}$.
(iii) Since the logarithm is an increasing function,

$$
\frac{1}{2} \log \left(2 \pi e E_{Y}(\operatorname{Var}(X \mid Y))\right) \leq \frac{1}{2} \log \left(2 \pi e \frac{a b}{a+b}\right)
$$

This inequality together with the result of the part (i) completes the proof.
Problem 3. We have

$$
\begin{aligned}
C & =\sup _{X: E\left[X^{2}\right] \leq P} I\left(X ; Y_{1}, Y_{2}\right) \\
& =h\left(Y_{1}, Y_{2}\right)-h\left(Y_{1}, Y_{2} \mid X\right) \\
& =h\left(X+Y_{1}, X+Y_{2}\right)-h\left(Z_{1}, Z_{2} \mid X\right) \\
& =h\left(X+Y_{1}, X+Y_{2}\right)_{h}\left(Z_{1}, Z_{2}\right),
\end{aligned}
$$

where we have used the fact that X and $\left(Z_{1}, Z_{2}\right)$ are independent. Now since

$$
\left(Z_{1}, Z_{2}\right) \sim \mathcal{N}\left((0,0),\left[\begin{array}{cc}
M & M \sigma \\
M \sigma & M
\end{array}\right]\right)
$$

we have

$$
h\left(Z_{1}, Z_{2}\right)=\frac{1}{2} \log \left((2 \pi e)^{2}|K|\right)=\frac{1}{2} \log \left((2 \pi e)^{2} M^{2}\left(1-\sigma^{2}\right)\right) .
$$

Further, we have

$$
h\left(X+Z_{1}, X+Z_{2}\right) \leq \frac{1}{2} \log \left((2 \pi e)^{2}|\tilde{K}|\right)=\frac{1}{2} \log \left((2 \pi e)^{2}(M(M-P(-2+\sigma))-(P+M \sigma) \sigma M)\right)
$$

where \tilde{K} is given by

$$
\left.\left[\begin{array}{cc}
P+M & P+M \sigma \\
P+M \sigma & P+M
\end{array}\right]\right) .
$$

Note that we get equality by assuming that $X \sim \mathcal{N}(0, P)$. Hence the capacity is:

$$
C=h\left(X+Z_{1}, X+Z_{2}\right)-h\left(Z_{1}, Z_{2}\right)=\frac{1}{2}\left(\log \left(1+\frac{2 P}{M(1+\sigma)}\right)\right) .
$$

So, we only need to substitute $\sigma=1, \frac{1}{2}$ and -1 to find the solution of each part.
Problem 4. (i) All rates less than $\frac{1}{2} \log \left(1+\frac{P}{\sigma_{1}^{2}}\right)$ are achievable.
(ii) The new noise $Z_{1}-\rho Z_{2}$ has zero mean and variance $E\left(\left(Z_{1}-Z_{2}\right)^{2}\right)=\sigma_{1}^{2}+\rho^{2} \sigma_{2}^{2}-2 \rho \sigma_{3}$. Therefore, all rates less than $\left.\frac{1}{2} \log \left(1+\frac{P}{\sigma_{1}^{2}+\rho^{2} \sigma_{2}^{2}-2 \rho \sigma_{3}}\right)\right)$ are achievable.
(iii) The capacity is $C=\max I\left(X ; Y_{1}, Y_{2}\right)=\max \left(h\left(Y_{1}, Y_{2}\right)-h\left(Z_{1}, Z_{2}\right)\right)$. We can easily see that the capacity achieving distribution on the input is $x \sim \mathcal{N}(0, P)$ and therefore Y_{1}, Y_{2} are jointly Gaussian random variables and the determinant of their covariance matrix will be equal to $\left(\sigma_{1}^{2}+P\right) \sigma_{2}^{2}-\sigma_{3}^{2}$. Hence, the capacity of the channel 3 will be equal to $\frac{1}{2} \log \left(\frac{\left(\sigma_{1}^{2}+P\right) \sigma_{2}^{2}-\sigma_{3}^{2}}{\sigma_{1}^{2} \sigma_{2}^{2}-\sigma_{3}^{2}}\right)$.

