ECOLE POLY TECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 23 Information Theory and Coding
Solution 10 December 7, 2010, SG1 — 15:15pm-17:00

Problem 1. (i) Notice that the capacity of Cy can be computed via the expression
MaxI(Y; X) =Max(H(Y) - H(Y|X)) =Max(H(Y) — H(Z))

where the maximum is taken over all the possible distributions on the input alphabet.
Therefore we only need to find the maximum of H(Y") over all possible distribution
on the set {—1,1}. To do this job we need to compute a non-trivial integral.

(ii) , Notice that this channel is in fact a BSC channel with error probability equal to
1 — ®(\/P). So the capacity of this channel is equal to 1 — Hy(1 — ®(v/P))

Problem 2. (i) Since among the random variables of a given variance, the Gaussian
random variable has the largest entropy, we can argue that

1
(XY =1) < élog(QﬂeVar(X\Y =)
for every value of y. Therefore we can conclude that
1
rX]Y) < Ey(§log(27reVar(X|Y)).

On the other hand, since log is a concave function, we can use the Jensen’s inequality
to conclude that Ey(3log(2meVar(X]Y))) < 1log(2meEy (Var(X|Y))). This com-
pletes the proof of the first part.

(ii) Since the minimum mean square error estimator of os X, based on the observa-
tion Y = y is X:MMSE(y) = E(X|Y = y), for every arbitrary estimator X(y)
we have E(Ex((Xanrse — X)) = E(Ex((E(X|Y) - X)) < E((X(y) — X)?).
But notice that Ex((E(X|Y) — X)?) = Var(X|Y). So, E(Ex((E(X|Y) — X)?) =
Ey((Var(X|Y))) and therefore, for every arbitrary estimator X(y) of X we have
By (Var(X|Y) < E(Ex((X — X)?)). In particular, let Xy (y) = ~43y- For this par-
ticular X (y) we will find E(Ex((X — X)?)). Since Y = X + Z and X and Z are
independent random variables, we have:
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E(Ex((X = X)) = E(Ex((—=Y = X))
= B(Bx((— (X +2) - X))
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Thus, Ey(Var(X|]Y)) < aa—&

(iii) Since the logarithm is an increasing function,

ab
a+b

%log(QﬁeEy(Var(X|Y)))< log(2re—"2-).
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This inequality together with the result of the part (i) completes the proof.

Problem 3. We have

C= sup I(X;Y),Y3)
X:E[X2]<P
= h(Y1,Y2) — h(Y1, V2| X)
=X + Y1, X +Y5) — h(Z1, 25| X)
=h(X + Y1, X + Y2)u(Z1, Z),

where we have used the fact that X and (7, Z5) are independent. Now since

(@2 ~ 50,01y, 7

Mo M

we have . |
WZy, Zy) = 3 log((2me)?|K|) = 3 log((2me)*M?(1 — o%)).

Further, we have

1 . 1
WX + 21, X + Z5) < 5 log((2me)?|K|) = 3 log((2me)*(M(M — P(=2 + o)) — (P + Mo)oM)).
where K is given by

P+M P+ Mo |

P+Mo P+M|”

Note that we get equality by assuming that X ~ A(0, P). Hence the capacity is:

2P

C =X+ Z1, X + Zo) — h(Z1, Z) = %(log(l s

So, we only need to substitute o =1, % and —1 to find the solution of each part.

Problem 4. (i) All rates less than §log(1 + %) are achievable.
1

(ii) The new noise Z; — pZ, has zero mean and variance E((Z, — Z5)?) = 02+ p?02 —2pos.
Therefore, all rates less than log(1 + m)) are achievable.

(iii) The capacity is C' = max I(X;Y7,Ys) = max(h(Y1,Ys) — h(Z1, Z2)). We can easily
see that the capacity achieving distribution on the input is x ~ N (0, P) and therefore
Y1, Ys are jointly Gaussian random variables and the determinant of their covariance

matrix will be equal to (0% + P)os — 02. Hence, the capacity of the channel 3 will be

(63 +P)o3—03 )
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equal to 3 log(



