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Problem 1. (i) Notice that the capacity of C2 can be computed via the expression

MaxI(Y ; X) = Max(H(Y ) − H(Y |X)) = Max(H(Y ) − H(Z))

where the maximum is taken over all the possible distributions on the input alphabet.
Therefore we only need to find the maximum of H(Y ) over all possible distribution
on the set {−1, 1}. To do this job we need to compute a non-trivial integral.

(ii) , Notice that this channel is in fact a BSC channel with error probability equal to
1 − Φ(

√
P ). So the capacity of this channel is equal to 1 − H2(1 − Φ(

√
P ))

Problem 2. (i) Since among the random variables of a given variance, the Gaussian
random variable has the largest entropy, we can argue that

h(X|Y = i) ≤ 1

2
log(2πeVar(X|Y = y)

for every value of y. Therefore we can conclude that

h(X|Y ) ≤ EY (
1

2
log(2πeVar(X|Y )).

On the other hand, since log is a concave function, we can use the Jensen’s inequality
to conclude that EY (1

2
log(2πeVar(X|Y ))) ≤ 1

2
log(2πeEY (Var(X|Y ))). This com-

pletes the proof of the first part.

(ii) Since the minimum mean square error estimator of os X, based on the observa-
tion Y = y is X̂MMSE(y) = E(X|Y = y), for every arbitrary estimator X̂(y)
we have E(EX((X̂MMSE − X)2)) = E(EX((E(X|Y ) − X)2)) ≤ E((X̂(y) − X)2).
But notice that EX((E(X|Y ) − X)2) = V ar(X|Y ). So, E(EX((E(X|Y ) − X)2) =
EY ((V ar(X|Y ))) and therefore, for every arbitrary estimator X̂(y) of X we have
EY (V ar(X|Y ) ≤ E(EX((X̂ − X)2)). In particular, let X̂Y (y) = a

a+b
y. For this par-

ticular X̂(y) we will find E(EX((X̂ − X)2)). Since Y = X + Z and X and Z are
independent random variables, we have:

E(EX((X̂ − X)2)) = E(EX((
a

a + b
Y − X)2))

= E(EX((
a

a + b
(X + Z) − X)2))

= E(EX((
a

a + b
Z − b

a + b
X)2))

= E(
a2

(a + b)2
EX(Z2) +

b2

(a + b)2
EX(X2))

=
a2

(a + b)2
E(EX(Z2)) +

b2

(a + b)2
EX(X2)

=
a2b

(a + b)2
+

ab2

(a + b)2

=
ab

a + b
.



Thus, EY (Var(X|Y )) ≤ ab
a+b

.

(iii) Since the logarithm is an increasing function,

1

2
log(2πeEY (Var(X|Y ))) ≤ 1

2
log(2πe

ab

a + b
).

This inequality together with the result of the part (i) completes the proof.

Problem 3. We have

C = sup
X:E[X2]≤P

I(X; Y1, Y2)

= h(Y1, Y2) − h(Y1, Y2|X)

= h(X + Y1, X + Y2) − h(Z1, Z2|X)

= h(X + Y1, X + Y2)h(Z1, Z2),

where we have used the fact that X and (Z1, Z2) are independent. Now since

(Z1, Z2) ∼ N ((0, 0),

[

M Mσ

Mσ M

]

),

we have

h(Z1, Z2) =
1

2
log((2πe)2|K|) =

1

2
log((2πe)2M2(1 − σ2)).

Further, we have

h(X + Z1, X + Z2) ≤
1

2
log((2πe)2|K̃|) =

1

2
log((2πe)2(M(M − P (−2 + σ)) − (P + Mσ)σM)).

where K̃ is given by
[

P + M P + Mσ

P + Mσ P + M

]

).

Note that we get equality by assuming that X ∼ N (0, P ). Hence the capacity is:

C = h(X + Z1, X + Z2) − h(Z1, Z2) =
1

2
(log(1 +

2P

M(1 + σ)
)).

So, we only need to substitute σ = 1, 1
2

and −1 to find the solution of each part.

Problem 4. (i) All rates less than 1
2
log(1 + P

σ2

1

) are achievable.

(ii) The new noise Z1−ρZ2 has zero mean and variance E((Z1−Z2)
2) = σ2

1 +ρ2σ2
2−2ρσ3.

Therefore, all rates less than 1
2
log(1 + P

σ2

1
+ρ2σ2

2
−2ρσ3

)) are achievable.

(iii) The capacity is C = max I(X; Y1, Y2) = max(h(Y1, Y2) − h(Z1, Z2)). We can easily
see that the capacity achieving distribution on the input is x ∼ N (0, P ) and therefore
Y1, Y2 are jointly Gaussian random variables and the determinant of their covariance
matrix will be equal to (σ2

1 + P )σ2
2 − σ2

3 . Hence, the capacity of the channel 3 will be

equal to 1
2
log(

(σ2

1
+P )σ2

2
−σ2

3

σ2

1
σ2

2
−σ2

3

).
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