ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 16
Signal Processing for Communications
Solution 8

Problem 1 (Gibbs Phenomenon)

i) We obtained $h[n]$ in problem 2 of HW 6 and it is equal to

$$
h[n]=\frac{\sin \left(2 \pi f_{c} n\right)}{\pi n}
$$

ii) According to problem 2 of HW 6 :

```
function H = LowPass(fc,N)
    fc = 0.25;
    if (N/2 == floor(N/2)) %Check N is even
    h = [sin(2*fc*pi*[-N/2:-1])./([-N/2:-1]*pi),2*fc...
        ,sin(2*fc*pi*[1:N/2-1])./([1:N/2-1]*pi)];
    else %N is odd
    h = [sin(2*fc*pi*[-(N-1)/2:-1])./([-(N-1)/2:-1]*pi), 2*fcc...
        ,sin(2*fc*pi*[1:(N-1)/2])./([1:(N-1)/2]*pi)];
    end
    H = fft(h,N);
    subplot(2,1,1)
    plot((-N/2:N/2-1)/N,abs(fftshift(H)));
    subplot(2,1,2)
    stem((-N/2:N/2-1)/N,angle(fftshift(H)));
```

iii) The maximum value of frequency responses does not depend on N. It always remains fixed around 1.09 (9% overshoot). See figure 1 for the results.

Figure 1: Plots of the magnitude (upper sub figures) and phase (lower sub figures) of H for different N.
iv) Here is the code to compute it :

```
% Fourier Transform of w[n]:
% Set a maximum for sequence:
close all
Max = 1000;
% The length windowing:
N = 100;
w = zeros(1,Max);
w(Max/2-N/2:1:Max/2+N/2) = ones(1,N+1);
W=fft(w);
% Supress the Phase shift:
% The Phase shift for DFT coefficeint k is
% e^{j*2*pi*(k/Max) * Max/2} = (-1)^k
W = W.* (-1).^(0:Max-1);
subplot(2,1,1)
plot((-Max/2:Max/2-1)/Max,fftshift(W));
title('Fourier transform W');
subplot(2,1,2)
stem(w);
title('Initial signal w[n]');
```

v)

```
%SHOULD RUN AFTER hw84.m
% Fourier Transform of Ideal LowPass filter with cut-off . 25 Hz:
H = zeros(1,Max);
% Frequency responses for frequencies -. 25 \leq k/Max \leq. 25 are equal to 1:
H(1:Max/4) = ones(1,Max/4);
H(Max-Max/4+1:Max)= ones(1,Max/4);
h = ifft(H);
figure
subplot (2,1,1)
plot((-Max/2:Max/2-1)/Max,abs(fftshift(H)));
subplot (2,1,2)
plot(abs(h));
Hhat = cconv(H,W,Max)/Max;
figure
%Find the index that the frequency response gets maximazed:
ind = find(Hhat(1:Max/2) \geq max(Hhat(1:Max/2)));
% The frequency of maximazed frequency response.
frequency = ind/Max
% Do the Convolution to find out why it is maximum:
circH = circshift(H, [1,ind]);
D = circH.*W;
hold on
plot((-Max/2:Max/2-1)/Max,fftshift(W));
plot((-Max/2:Max/2-1)/Max,fftshift(D),'r');
```

f_{N} increases by growing N and for large values of N, it gets close to 0.25 (from left). See figure 2 for the results.

Figure 2: Plots of $W\left(e^{j 2 \pi \theta}\right)$ and $H\left(e^{j 2 \pi(f-\theta)}\right) \cdot W\left(e^{j 2 \pi \theta}\right)$ for different N
vi) We know that, $W\left(e^{j 2 \pi \theta}\right)=\frac{\sin \left(\left(N+\frac{1}{2}\right) 2 \pi \theta\right)}{\sin (\pi \theta)}$ for $\frac{-1}{2} \leq \theta \leq \frac{1}{2}$.

The maximum value of frequency response takes place when the window of $H\left(e^{j 2 \pi(f-\theta)}\right)$ doesn't cover one of the main negative lope and the remaining lopes before that. Indeed, the integral value behind this part of $W\left(e^{j 2 \pi \theta}\right)$ is about -0.089 . Therefore, since

$$
\int_{-1 / 2}^{1 / 2} W\left(e^{j 2 \pi \theta}\right) d \theta=1
$$

we can conclude that

$$
\int_{-1 / 2}^{1 / 2} W\left(e^{j 2 \pi \theta}\right) H\left(e^{j 2 \pi(f-\theta)}\right) d \theta \approx 1.089
$$

By changing N, the integral under the rescaled frequency response does not change. Therefore, the maximum value remains about 1.089.

Problem 2 (Weighted Least-Squares Filter Design)

i) Due to

$$
E(f)=W\left(e^{j 2 \pi f}\right)\left[D\left(e^{j 2 \pi f}\right)-H_{d}\left(e^{j 2 \pi f}\right)\right]
$$

we can easily compute the matrices \mathbf{W} and \mathbf{U} and the vector \mathbf{d}.
Consider $f=f_{i}=\frac{i}{K}$

$$
e_{i}=E\left(f_{i}\right)=W\left(e^{j 2 \pi \frac{i}{K}}\right)\left[D\left(e^{j 2 \pi \frac{i}{K}}\right)-H_{d}\left(e^{j 2 \pi \frac{i}{K}}\right)\right] .
$$

Therefore, for the vector $\mathbf{d}=\left[d_{0}, \ldots, d_{K}\right]$:

$$
d_{i}= \begin{cases}0 & i<f_{p} K \\ 1 & i \geq f_{p} K\end{cases}
$$

In fact the interval between $f_{s} K$ and $f_{p} K$ is not important since the weight considered for this interval is zero. Therefore, we can set it anything, so we let that 0 .
And then the i-th row of matrix U is

$$
U_{i}=\left[1,2 \cos \left(2 \pi \frac{i}{K}\right), 2 \cos \left(2 \pi \cdot 2 \cdot \frac{i}{K}\right), \ldots, 2 \cos \left(2 \pi \frac{M-1}{2} \frac{i}{K}\right)\right]
$$

The matrix W is a diagonal matrix such that :

$$
W_{i i}=W\left(e^{j 2 \pi \frac{i}{K}}\right)= \begin{cases}\frac{\delta_{p}}{\delta_{s}} & i \leq f_{s} K \\ 1 & i \geq f_{p} K \\ 0 & \text { otherwise }\end{cases}
$$

ii) We know that

$$
e=W(d-U h)
$$

for every e_{i}, we have two conditions :

$$
e_{i} \leq \delta_{p} \quad \text { and } \quad-e_{i} \leq \delta_{p}
$$

Therefore we make the following vector

$$
\left[\begin{array}{c}
\mathbf{e} \\
\cdots \\
-\mathbf{e}
\end{array}\right]=\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{K} \\
\cdots \\
-e_{1} \\
\vdots \\
e_{K}
\end{array}\right] \leq\left[\begin{array}{c}
\delta_{p} \\
\delta_{p} \\
\vdots \\
\delta_{p}
\end{array}\right]=\delta_{\mathbf{p}}
$$

Hence,

$$
\begin{gathered}
{\left[\begin{array}{c}
\mathbf{e} \\
\cdots \\
-\mathbf{e}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
W_{K \times K} & 0_{K \times K} \\
0_{K \times K} & W_{K \times K}
\end{array}\right]}_{W^{\prime}}[\underbrace{\left[\begin{array}{c}
d \\
\cdots \\
d
\end{array}\right]}_{d^{\prime}} \underbrace{\left[\begin{array}{c}
U_{K \times K} \\
\cdots \\
U_{K \times K}
\end{array}\right]}_{U^{\prime}} h] \leq \delta_{p}} \\
W^{\prime}\left(d^{\prime}-U^{\prime} h\right) \leq \delta_{p} \Rightarrow-W^{\prime} U^{\prime} h \leq \delta_{p}-W^{\prime} d^{\prime}
\end{gathered}
$$

Thus, $A=-W^{\prime} U^{\prime}$ and $b=\delta_{p}-W^{\prime} d^{\prime}$
In part (iii) we should insert the above matrices in the code to obtain the desired WLS filter.

