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Problem 1 (Overlap Add and Save Methods)

i) conv(x,h) in MATLAB uses DFT in order to convolve x and h linearly. In fact, it
uses fft to compute DFT of x and h and then multiplies their DFTs and finally takes
the inverse DFT to obtain result (recall: convolution in time domain is equivalent to
multiplication in frequency domain).

In this problem you are be familiar with overlap-add and overlap-save methods in
order to compute linear convolution more easily than direct method when the length
of input signal is large.

ii)

y[n] = x[n] ∗ h[n]

= (
∞∑

r=0

xr[n− rB]) ∗ h[n]

=
∞∑

r=0

(xr[n− rB] ∗ h[n])

=
∞∑

r=0

yr[n− rB].

iii) In order to compare elapsed time for running convolution operation in different meth-
ods, we should write down convolution formula without using conv. Since it is not so
interesting, we just focus on theoretical results instead of time comparison.

iv) Assume that y1 is the output of linear convolution between B-points signal x and
P -points impulse response h (where P < B). So, length of y1 is B + P − 1. We also
know that the output of circular convolution of x and h has length B (it must have
the same length as input signal x). If we call this signal y2, we will have:

y2[0] = y1[0] + y1[B]

y2[1] = y1[1] + y1[B + 1]

. . .

y2[P − 2] = y1[P − 2] + y1[B + P − 2]

and

y2[P − 1] = y1[P − 1]

. . .

y2[B − 1] = y1[B − 1]

So, y2[n] = y1[n] except for first P − 1 indices.



v)

xr[n] = x[n + r(B − P + 1)− P + 1] 0 ≤ n ≤ B − 1

y[n] =
+∞∑
r=0

yr[n− r(B − P + 1) + P − 1]

where {
yr[n] = yrp[n] P − 1 ≤ n ≤ B − 1

yr[n] = 0 otherwise

and yrp[n] is the circular convolution of xr[n] with h[n].

vi)
% overlap-save method: "save" in input(!)

% add P-1 extra zeros at input
extra zeros=zeros(1,P-1);
x=[extra zeros, x];
L=length(x);
y3=[];

tic
while(length(x)≥B)

% circular convolution using cconv; recall: cconv(x,h,length(x))
% returns the output of filter h when input is x.
% Lengths of input and output are equal to each other.

% circular convolve for one B-points window from x
temp3=cconv(x(1:B),h,B);

% save results without considering first P-1 points
y3=[y3, temp3(P:end)];

% shift window to the right considering P-1 points overlapped
% with preceding section.
x=x( ((B+1)-(P-1)) : end);

end
toc

Problem 2

i)

h[n] =

∫ 1/2

−1/2

H(ej2πf )ej2πfndf

=

∫ fc

−fc

1 · ej2πfndf =
1

j2πn
ej2πfn

∣∣∣∣
fc

−fc

=
sin(2πfcn)

πn
.

The ideal low pass filter is a non-causal infinite impulse response (IIR) filter.
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Figure 1: Plots of part 2.ii.

ii) It is not an ideal low pass. As mentioned before, the ideal filter has an infinite impulse
response.
No, the reason is that the ideal LP filter is a non-causal filter while this LP filter is a
causal and its impulse response starts at n = 1. It means that it is an ideal LP filter
with an infinite (N/2) delay.

iii) As mentioned in the previous part, we should remove the N/2 delay taken place by
using LowPass.m function. The following script is the corresponding code:

%Part iii:
clear all
N=100;

x0 = sin(0.05*[1:N])+sin(.1*[1:N])+sin(.2*[1:N])+ sin(1*[1:N]);
xlp=sin(0.05*[1:N])+sin(.1*[1:N])+sin(.2*[1:N]);
X0=fft(x0,N); %Fourier Transform of x0
plot((-N/2:N/2-1)/N,abs(fftshift(X0)));
hold on

H0=LowPass(.1,N);
plot((-N/2:N/2-1)/N,abs(fftshift(H0)),'r');
X1=X0.*H0;
plot((-N/2:N/2-1)/N,abs(fftshift(X1)),'g');
xlabel('Frequency (Hz)')
ylabel('Fourier transform magnitude')
x1=ifft(X1,N);
x1 = circshift(x1',N/2)'; % It is needed because the LowPass filter
% is started from 1 not from -N/2.
figure
stem(x0)
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hold on
stem(x1,'r')
stem(xlp,'g')

In Fig. 2, the frequency response and time response of x0[n] and its filtered signal are
depicted. In the frequency domain the blue curve is the frequency response of x0[n].
The red curve is frequency response of the LP filter and finally the green curve is the
frequency response of the filtered x0[n].
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Figure 2: Plots of part 2.iii.

iv) By observing the spectrum of xu[n] and xlp[n] we can see that the spectrum of xu[n]
contains the spectrum of 1

L
xlp[n] and its copies with interval 2π

L
(or 1

L
Hz). Therefore,

if we filters xu[n] by a low pass filter with cut off frequency 1
2L

Hz and gain L, the xlp[n]
will be retrieved. In Fig. 3 the frequency response and the time response of the filtered
signal are depicted. As we see, the resulted signal after decimation and interpolation
is very close to the original signal.

%Part iv:
%Decimation:
M=2;
L=2;

figure
xd = x1(1:M:N); %down sample x1 by the factor M.
Nd=floor(N/M);
Xd = fftshift(fft(xd,Nd));
plot((-Nd/2:Nd/2-1)/(Nd),abs(Xd));

% Up sampling xd by the factor L.
%Zero Padding:
Nu=L*Nd;
xu=zeros(1,Nu);
xu(1:L:Nu)= xd;
Xu=fft(xu,Nu);
hold on
plot((-Nu/2:Nu/2-1)/(Nu),abs(fftshift(Xu)),'r');

%Interpolation:
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% Using Ideal Low Pass Filter with Gain L and cut-off rate 1/2L:

LP=floor(Nu/(2*L));
H = L*LowPass(1/(2*L),Nu);
plot((-Nu/2:Nu/2-1)/(Nu),abs(fftshift(H)),'g');
xlabel('Frequency (Hz)')
ylabel('Fourier transform magnitude')
X4 = Xu.*H;
x4 = ifft(X4,Nu);

x4 = circshift(x4',Nu/2)';% It is needed because the LowPass filter
% is started from 1 not from -N/2.
figure
plot(x1(1:length(x4)));
hold on
plot(x4,'r');
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Figure 3: Plots of part 2.iv.

v) To retrieve the same signal, M = L. By performing down sampling the frequency re-
sponse of the resulted signal is the frequency response of the original signal expanded
in frequency domain by factor M . By carelessly expansion in frequency domain, the
expanded frequency response of two consequence copies of the original frequency re-
sponse, e.g. laid at 0 and 2π, may combine with each other and then the original signal
can not be retrieved( We lose some information). Assume that xlp[n] has the bandwidth
fc. Thus, the bandwidth of the downsampled signal x[n] is equal to Mfc. If Mfc ≥ 1

2
,

then the spectrum of the frequency response of Xd(
1
2
) = Xlp(

1
2M

) + Xlp(1− 1
2M

).
Therefore, by performing upsampling the frequency response of xu[n] changes from
copies of frequency response of xlp[n] to copies of some distorted frequency response of
xlp[n]. This phenomena is called aliasing. In this problem, M ≤ 5. In Fig. 4, 5, 6, the
resulted signal for different values of M is depicted. As we can see, for M = 6, two
signals are not the same any more.
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M=4

Figure 4: Plots of part 2.v where M = 4.
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M=5

Figure 5: Plots of part 2.v where M = 5.
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Figure 6: Plots of part 2.v where M = 6.
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