ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 8	Signal Processing for Communications
Solution 4	March 21, 2011, INF213 – 10:15am-12:00

Problem 1 (This Only Looks Complex)

i) Take $X = e^{-\frac{j2\pi}{N}m}$, then :

$$S = \sum_{n=0}^{N-1} e^{-\frac{j2\pi}{N}mn} = \sum_{n=0}^{N-1} X^n = 1 + X + \dots + X^{N-1}.$$

If X = 1, then S = N. Otherwise, it is a geometric series and

$$S = \frac{1 - X^N}{1 - X} = 0 \qquad \text{since } X^N = (e^{-\frac{j2\pi}{N}m})^N = e^{-j2\pi m} = 1.$$

ii)
$$X^N - 1 = (X - 1)(1 + X + \dots + X^{N-1}) = 0.$$

From the previous part, we know that $X = e^{-\frac{j2\pi}{N}m}$ for $m = 0, 1, \dots, N-1$ are the roots of $X^N - 1 = 0.$

iii) Note that

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$
 and $e^{j\theta} = \cos \theta + j \sin \theta \Rightarrow \cos \theta = Re\{e^{j\theta}\}.$

Therefore,

$$\sum_{n=0}^{N-1} \cos^2(\frac{2\pi}{N}kn) = \sum_{n=0}^{N-1} \frac{1 + \cos(\frac{2\pi}{N}2kn)}{2} = \frac{N}{2} + \frac{1}{2}\sum_{n=0}^{N-1} \cos(\frac{2\pi}{N}2kn).$$

But,

$$\sum_{n=0}^{N-1} \cos(\frac{2\pi}{N} 2kn) = \sum_{n=0}^{N-1} Re\{e^{j\frac{2\pi}{N} 2kn}\} = Re\left\{\sum_{n=0}^{N-1} e^{j\frac{4\pi}{N} kn}\right\}$$

Since for $2k \neq iN, i \in \mathbb{Z}, \sum_{n=0}^{N-1} e^{j\frac{4\pi}{N}kn} = 0$, we conclude that

$$\sum_{n=0}^{N-1} \cos \frac{4\pi}{N} kn = Re\{0\} = 0.$$

Finally :

$$\sum_{n=0}^{N-1} \cos^2(\frac{2\pi}{N}kn) = \frac{N}{2}.$$

Problem 2 (Black Box)

i) A complex signal c[n] can be written as a summation of two real signals : real part and imaginary part which is multiplied by j. It means that

$$c[n] = x[n] + jy[n]$$

where $x[n] = \frac{c[n]+c^*[n]}{2}$ is the real part of the signal and $y[n] = \frac{c[n]-c^*[n]}{2j}$ is the imaginary part of the signal. Note that $c^*[n]$ is the complex conjugate of c[n].

Since DFT operator is a linear operator, i.e. $DFT(\alpha a[n] + \beta b[n]) = \alpha DFT(a[n]) + \beta DFT(b[n])$, we can conclude that

$$DFT(c[n]) = DFT(x[n]) + jDFT(y[n]) = F_N^k(x[n]) + jF_N^k(y[n])$$

$$\Rightarrow G_N^k(c[n]) = F_N^k\left(\frac{c[n] + c^*[n]}{2}\right) + jF_N^k\left(\frac{c[n] - c^*[n]}{2}\right)$$

We could also reach to the above equation by explicitly using the DFT expansion.

ii) By using Problem (6.3) of homework 2, if C[k] is the N-point DFT of the signal c[n], then

$$c[n] \xrightarrow{DFT} Nc[(-k)modN]$$

or equivalently,

$$C[(-n)modN] \xrightarrow{DFT} NC[k].$$

Therefore,

$$c[k] = \frac{1}{N} G_N^k(C[(-n)modN]).$$

iii) Since $G_N^k(\cdot)$ functionals can operate on signals with length at most N, we should divide x[n] into two signals with length N. One way is to divide x[n] to odd and even components :

$$x_e[\ell] = x[2\ell]$$
 and $x_o[\ell] = x[2\ell+1]$, for $\ell = 0, 1, \dots, N-1$.

Then, for $K = 0, 1, \dots, 2N - 1$,

$$\begin{split} X[K] &= \sum_{n=0}^{2N-1} x[n] e^{-j\frac{2\pi}{2N}Kn} = \sum_{\ell=0}^{N-1} x[2\ell] e^{-j\frac{2\pi K}{2N}(2\ell)} + \sum_{\ell=0}^{N-1} x[2\ell+1] e^{-j\frac{2\pi K}{2N}(2\ell+1)} \\ &= \sum_{\ell=0}^{N-1} x_e[\ell] e^{-j\frac{2\pi K}{N}\ell} + e^{-j\frac{\pi K}{N}} \sum_{\ell=0}^{N-1} x_o[\ell] e^{-j\frac{2\pi K}{N}\ell} = X_e[K] + e^{-j\frac{\pi K}{N}} X_o[K]. \end{split}$$

Note that the DFT of $x_e[n]$ and $x_o[n]$ is N-point DFT and therefore $X_e[K+N] = X_e[K]$ for K = 0, 1, ..., N - 1. Hence,

$$X[K] = \begin{cases} X_e[K] + e^{-j\frac{\pi K}{N}} X_o[K] & 0 \le K < N \\ X_e[K-N] + e^{-j\frac{\pi K}{N}} X_o[K-N] & N \le K < 2N \end{cases}$$

or

$$X[K] = \begin{cases} G_N^K[x_e[n]] + e^{-j\frac{\pi K}{N}} G_N^K[x_o[n]] & 0 \le K < N \\ G_N^{K-N}[x_e[n]] + e^{-j\frac{\pi K}{N}} G_N^{K-N}[x_o[n]] & N \le K < 2N \end{cases}$$

Problem 3

i) We show that it is not summable. On the contrary, assume that it is summable. Then for every $\varepsilon > 0$, there exists a finite set $J_{\varepsilon} \in \mathbb{N}$ such that for every finite set $K \in \mathbb{N}$, $\left|\sum_{n \in K} a_n\right| < \varepsilon$ if $K \cap J_{\varepsilon} = \emptyset$.

We show that it is not possible to have such J_{ε} . As J_{ε} is finite set in \mathbb{N} , then it has a maximum member. Let $M = \max J_{\varepsilon}$ then $J_{\varepsilon} \subseteq \{1, 2, \dots, M\}$. Define $K^{(L)} = \{2M, 2(M+1), \dots, 2(M+L)\}$. $K^{(L)} \cap J_{\varepsilon} = \emptyset$ for all L values but :

$$\sum_{n \in K^{(L)}} a_n = \frac{1}{2} \sum_{n=M}^{L+M} \frac{1}{n} > \frac{1}{2} \int_M^{M+L} \frac{1}{x} dx + \frac{1}{2M} = \frac{1}{2} \ln \frac{M+L}{M} + \frac{1}{2M}$$

The inequality could be easily verified similar to what we did in Problem (2.b) in homework 1. Hence,

$$\sum_{n \in K^{(L)}} a_n > \frac{1}{2} \ln(1 + \frac{L}{M}) + \frac{1}{2M}.$$

For arbitrary large L, $\left|\sum_{n\in K^{(L)}}a_n\right|$ could take any large value. Therefore, there exists many $K\in\mathbb{N}$ such that $K\cap J_{\varepsilon}=\emptyset$ and $\sum_{n\in K}a_n>\varepsilon$ for every finite J_{ε} and $\varepsilon>0$.

ii) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is absolutely convergent if $\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent.

 $\sum_{n=1}^{\infty} \frac{1}{n}$ is harmonic series and in the Problem (2.b) of homework 1 we have shown that it is divergent. Hence, $\sum \frac{(-1)^n}{n}$ is not absolutely convergent. However, it is convergent.

iii) Let's begin with the sufficient condition. If $\sum_{n=1}^{\infty} a_n$ converge absoutely, then $\{a_n\}$ is summable.

Consider $S_n = \sum_{i=1}^n |a_i|$. Since $S_n < \infty$ (it is bounded) and S_n is an increasing sequence, then it converges to a value, call it S. In other words, for every $\varepsilon > 0$,

$$\exists M(\epsilon) \in \mathbb{N} \text{ such that } n \ge M(\epsilon) : \left| \sum_{i=1}^{n} |a_i| - S \right| < \varepsilon$$

For a given $\varepsilon > 0$, let $n = M(\epsilon)$. Thus,

$$\left|\sum_{i=1}^{M(\epsilon)} |a_i| - S\right| = \left|\sum_{i=1}^{M(\epsilon)} |a_i| - \sum_{i=1}^{\infty} |a_i|\right| < \varepsilon$$

But $\sum_{i=1}^{M(\epsilon)} |a_i| - \sum_{i=1}^{\infty} |a_i| = \sum_{i=M(\epsilon)+1}^{\infty} |a_i|$. Therefore, $\sum_{i=M(\epsilon)+1}^{\infty} |a_i| < \varepsilon$. Let $J_{\varepsilon} = \{1, 2, \dots, M(\epsilon)\}$, then every finite set $K \in \mathbb{N}$ such that $K \cap J_{\varepsilon} = \emptyset$ is a subset of $\{M(\epsilon) + 1, M(\epsilon) + 2, \dots\}$ and consequently,

$$\sum_{i \in K} |a_i| < \sum_{i=M(\epsilon)+1}^{\infty} |a_i| < \varepsilon.$$

It means that $\{a_i\}$ is summable.

Now, we prove the necessary condition. If $\{a_n\}$ is summable, then $\sum a_n$ converges absolutely.

Let us first assume that $\{a_n\}$ is a real sequence. If $\{a_n\}$ is summable, for a given $\varepsilon > 0$, there exists J_{ε} such that for every K finite set and $K \cap J_{\varepsilon} = \emptyset : \left| \sum_{n \in K} a_n \right| < \varepsilon$.

Consider a given set K. We split it into the finite set K^+ with positive elements and the finite set K^- with negative elements. Therefore, $K^+ \cap J_{\varepsilon} = \emptyset$ and $K^- \cap J_{\varepsilon} = \emptyset$. Then :

$$\left|\sum_{n \in K^+} a_n\right| = \sum_{n \in K^+} |a_n| < \varepsilon$$

$$\Rightarrow \sum_{n \in K^+ \cup K^- = K} |a_n| < 2\varepsilon.$$

$$\left|\sum_{n \in K^-} a_n\right| = \sum_{n \in K^-} |a_n| < \varepsilon$$

Therefore, for every finite set K such that $K \cap J_{\varepsilon} = \emptyset$:

$$\sum_{n \in K} |a_n| < 2\varepsilon$$

Since we can take K arbitrarily large, thus $\sum_{n \in \mathbb{N}} |a_n| = \sum_{n \in J_{\varepsilon}} |a_n| + \sum_{n \notin J_{\varepsilon}} |a_n|$ is bounded and then it is absolutely convergent.

For the complex sequence, every complex sequence can be written as a summation of two (real and imaginary) sequences :

$$a_n = x_n + jy_n, x_n, y_n \in \mathbb{R}$$

where $|x_n| < |a_n|$ and $|y_n| < |a_n|$ and $|a_n| < |x_n| + |y_n|$. It can be easily verified that if $\{a_n\}$ is summable then $\{x_n\}$ and $\{y_n\}$ are summable and consequently $\sum x_n$ and $\sum y_n$ are absolutely convergent. Hence, $\sum |a_n| < \sum |x_n| + \sum |y_n| < \infty$ is absolutely convergent.

Problem 4

i) We are looking for the coefficients $\{\alpha_0, \alpha_1, \ldots, \alpha_n\}$ such that :

$$\alpha_0 + \alpha_1 x + \dots + \alpha_n x_n = 0 \qquad \forall x \in [0, 1]$$

If $\alpha_n \neq 0$, then the above polynomial with degree *n* has at most *n* different solutions but it should be zero for all $x \in [0, 1]$. Therefore, it is not possible unless all coefficients are equal to zero. Thus, $\{1, x, \ldots, x^n\}$ are linearly independent.

ii) To find the orthonormal basis for a given set of vectors, we use Gram-Schmidt procedure. In the space of C[0,1] define $v_0 = 1, v_1 = x^1, \ldots, v_n = x^n$.

Then
$$u_0(x) = \frac{v_0}{||v_0||} = 1$$
, $||v_0|| = \sqrt{\langle 1, 1 \rangle} = \sqrt{\int_0^1 1 dx} = 1$
 $u_1(x) = \frac{v_1 - \langle u_0, v_1 \rangle u_0}{||v_1 - \langle u_0, v_1 \rangle u_0||} = \frac{x - \langle 1, x \rangle}{||x - \langle 1, x \rangle ||}$
 $\langle 1, x \rangle = \int_0^1 x dx = \frac{1}{2}$, $||x - \frac{1}{2}|| = \sqrt{\langle x - 1/2, x - 1/2 \rangle} = \sqrt{\int_0^1 (x - \frac{1}{2})^2 dx} = \frac{1}{\sqrt{12}}$

Therefore, $u_1(x) = \sqrt{12}(x - 1/2)$.

The other orthonormal elements of the basis can be made by the following recursion :

$$u_{\ell}(x) = \frac{x^{\ell} - \sum_{i=0}^{\ell-1} < x^{\ell}, u_i(x) > u_i(x)}{||x^{\ell} - \sum_{i=0}^{\ell-1} < x^{\ell}, u_i(x) > u_i(x)||}.$$

iii) By the projection theorem, $v_p \in B$ is the projection of a vector v in the Hilbert subspace B, if

$$||v - v_p|| = \inf_{w \in B} ||v - w||.$$

To find a polynomial with degree n, $P_n(x)$, which has the minimum total squared error with p(x), i.e. $||p(x) - P_n(x)||^2$, we should look for the projection of p(x) in the Hilbert space of all polynomial functions of degree n with the norm $|| \cdot ||$. Assume that $P_n(x) = \sum_{i=0}^n b_i u_i(x)$, then :

$$b_i = \langle P_n(x), u_i(x) \rangle = \langle p(x), u_i(x) \rangle = \int_0^1 p(x) u_i^*(x) dx.$$

iv) We should find the projection of $\sin \frac{\pi}{2}x$ in the space of polynomials with degree 2. The orthonormal basis $\{u_0(x), u_1(x), u_2(x)\}$ is equal to :

$$u_0(x) = 1,$$

$$u_1(x) = \sqrt{12}(x - 1/2),$$

$$u_2(x) = \frac{x^2 - \langle x^2, 1 \rangle - \langle x^2, u_1(x) \rangle u_1(x)}{||x^2 - \langle x^2, 1 \rangle - \langle x^2, u_1(x) \rangle u_1(x)||} = 6\sqrt{5}(x^2 - x + 1/6).$$

Therefore,

$$b_0(x) = <\sin\frac{\pi}{2}x, 1 > = \int_0^1 \sin\pi/2x dx = \frac{2}{\pi},$$

$$b_1(x) = <\sin\frac{\pi}{2}x, u_1(x) > = \sqrt{12}\frac{4}{\pi^2} - \sqrt{12}\frac{1}{\pi},$$

$$b_2(x) = <\sin\frac{\pi}{2}x, u_2(x) > = 6\sqrt{5}(\frac{4}{\pi^2} - \frac{16}{\pi^3}) + \frac{2\sqrt{5}}{\pi}.$$

The two last are concluded since :

$$\int_{0}^{1} x \sin \frac{\pi}{2} x dx = \frac{-2x}{\pi} \cos \frac{\pi}{2} x |_{0}^{1} + \frac{2}{\pi} \int_{0}^{1} \cos \frac{\pi}{2} x dx$$
$$= \frac{4}{\pi^{2}} \sin \frac{\pi}{2} x |_{0}^{1} = \frac{4}{\pi^{2}},$$
$$\int_{0}^{1} x^{2} \sin \frac{\pi}{2} x dx = \frac{-2x^{2}}{\pi} \cos \frac{\pi}{2} x |_{0}^{1} + \frac{4}{\pi} \int_{0}^{1} x \cos \frac{\pi}{2} x dx$$
$$= \frac{8}{\pi^{2}} x \sin \frac{\pi}{2} x |_{0}^{1} - \frac{8}{\pi^{2}} \int_{0}^{1} \sin \frac{\pi}{2} x dx$$
$$= \frac{8}{\pi^{2}} + \frac{16}{\pi^{3}} \cos \frac{\pi}{2} x |_{0}^{1}$$
$$= \frac{8}{\pi^{2}} + \frac{16}{\pi^{3}}.$$

Figure 1: Plot of $\sin \frac{\pi}{2}x$ and its approximated polynomials of degree 2 and 3.

We solved the two integrals by using integration by part. Finally,

$$P_2(x) = b_0 + b_1 u_1(x) + b_2 u_2(x) = -0.024 + 1.878x - 0.834x^2.$$

If we proceed one degree more, the degree 3 approximated polynomial is :

$$P_3(x) = P_2(x) + b_3 u_3(x) = -0.002 + 1.6134x - 0.1724x^2 - 0.4413x^3.$$

In figure 1, the plots of $\sin \frac{\pi}{2}x$, $P_2(x)$ and $P_3(x)$ are depicted. We can see that $P_3(x)$ is located very close to $\sin \frac{\pi}{2}x$.