ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
 School of Computer and Communication Sciences

Handout 8
Signal Processing for Communications
Solution 4
March 21, 2011, INF213 - 10:15am-12:00

Problem 1 (This Only Looks Complex)

i) Take $X=e^{-\frac{j 2 \pi}{N} m}$, then :

$$
S=\sum_{n=0}^{N-1} e^{-\frac{j 2 \pi}{N} m n}=\sum_{n=0}^{N-1} X^{n}=1+X+\cdots+X^{N-1} .
$$

If $X=1$, then $S=N$. Otherwise, it is a geometric series and

$$
S=\frac{1-X^{N}}{1-X}=0 \quad \text { since } X^{N}=\left(e^{-\frac{j 2 \pi}{N} m}\right)^{N}=e^{-j 2 \pi m}=1
$$

ii) $X^{N}-1=(X-1)\left(1+X+\cdots+X^{N-1}\right)=0$.

From the previous part, we know that $X=e^{-\frac{j 2 \pi}{N} m}$ for $m=0,1, \ldots, N-1$ are the roots of $X^{N}-1=0$.
iii) Note that

$$
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} \quad \text { and } \quad e^{j \theta}=\cos \theta+j \sin \theta \Rightarrow \cos \theta=\operatorname{Re}\left\{e^{j \theta}\right\}
$$

Therefore,

$$
\sum_{n=0}^{N-1} \cos ^{2}\left(\frac{2 \pi}{N} k n\right)=\sum_{n=0}^{N-1} \frac{1+\cos \left(\frac{2 \pi}{N} 2 k n\right)}{2}=\frac{N}{2}+\frac{1}{2} \sum_{n=0}^{N-1} \cos \left(\frac{2 \pi}{N} 2 k n\right)
$$

But,

$$
\sum_{n=0}^{N-1} \cos \left(\frac{2 \pi}{N} 2 k n\right)=\sum_{n=0}^{N-1} \operatorname{Re}\left\{e^{j \frac{2 \pi}{N} 2 k n}\right\}=\operatorname{Re}\left\{\sum_{n=0}^{N-1} e^{j \frac{4 \pi}{N} k n}\right\}
$$

Since for $2 k \neq i N, i \in \mathbb{Z}, \sum_{n=0}^{N-1} e^{j \frac{4 \pi}{N} k n}=0$, we conclude that

$$
\sum_{n=0}^{N-1} \cos \frac{4 \pi}{N} k n=\operatorname{Re}\{0\}=0
$$

Finally :

$$
\sum_{n=0}^{N-1} \cos ^{2}\left(\frac{2 \pi}{N} k n\right)=\frac{N}{2}
$$

Problem 2 (Black Box)

i) A complex signal $c[n]$ can be written as a summation of two real signals : real part and imaginary part which is multiplied by j . It means that

$$
c[n]=x[n]+j y[n]
$$

where $x[n]=\frac{c[n]+c^{*}[n]}{2}$ is the real part of the signal and $y[n]=\frac{c[n]-c^{*}[n]}{2 j}$ is the imaginary part of the signal. Note that $c^{*}[n]$ is the complex conjugate of $c[n]$.

Since DFT operator is a linear operator, i.e. $\operatorname{DFT}(\alpha a[n]+\beta b[n])=\alpha D F T(a[n])+$ $\beta D F T(b[n])$, we can conclude that

$$
\begin{aligned}
& \operatorname{DFT}(c[n])=\operatorname{DFT}(x[n])+j D F T(y[n])=F_{N}^{k}(x[n])+j F_{N}^{k}(y[n]) \\
& \Rightarrow G_{N}^{k}(c[n])=F_{N}^{k}\left(\frac{c[n]+c^{*}[n]}{2}\right)+j F_{N}^{k}\left(\frac{c[n]-c^{*}[n]}{2}\right)
\end{aligned}
$$

We could also reach to the above equation by explicitly using the DFT expansion.
ii) By using Problem (6.3) of homework 2, if $C[k]$ is the N-point DFT of the signal $c[n]$, then

$$
c[n] \xrightarrow{D F T} N c[(-k) \bmod N]
$$

or equivalently,

$$
C[(-n) \bmod N] \xrightarrow{D F T} N C[k]
$$

Therefore,

$$
c[k]=\frac{1}{N} G_{N}^{k}(C[(-n) \bmod N])
$$

iii) Since $G_{N}^{k}(\cdot)$ functionals can operate on signals with length at most N, we should divide $x[n]$ into two signals with length N. One way is to divide $x[n]$ to odd and even components :

$$
x_{e}[\ell]=x[2 \ell] \text { and } x_{o}[\ell]=x[2 \ell+1], \text { for } \ell=0,1, \ldots, N-1 .
$$

Then, for $K=0,1, \ldots, 2 N-1$,

$$
\begin{aligned}
X[K] & =\sum_{n=0}^{2 N-1} x[n] e^{-j \frac{2 \pi}{2 N} K n}=\sum_{\ell=0}^{N-1} x[2 \ell] e^{-j \frac{2 \pi K}{2 N}(2 \ell)}+\sum_{\ell=0}^{N-1} x[2 \ell+1] e^{-j \frac{2 \pi K}{2 N}(2 \ell+1)} \\
& =\sum_{\ell=0}^{N-1} x_{e}[\ell] e^{-j \frac{2 \pi K}{N} \ell}+e^{-j \frac{\pi K}{N}} \sum_{\ell=0}^{N-1} x_{o}[\ell] e^{-j \frac{2 \pi K}{N} \ell}=X_{e}[K]+e^{-j \frac{\pi K}{N}} X_{o}[K] .
\end{aligned}
$$

Note that the DFT of $x_{e}[n]$ and $x_{o}[n]$ is N-point DFT and therefore $X_{e}[K+N]=X_{e}[K]$ for $K=0,1, \ldots, N-1$. Hence,

$$
X[K]= \begin{cases}X_{e}[K]+e^{-j \frac{\pi K}{N}} X_{o}[K] & 0 \leq K<N \\ X_{e}[K-N]+e^{-j \frac{\pi K}{N}} X_{o}[K-N] & N \leq K<2 N\end{cases}
$$

or

$$
X[K]= \begin{cases}G_{N}^{K}\left[x_{e}[n]\right]+e^{-j \frac{\pi K}{N}} G_{N}^{K}\left[x_{o}[n]\right] & 0 \leq K<N \\ G_{N}^{K-N}\left[x_{e}[n]\right]+e^{-j \frac{\pi K}{N}} G_{N}^{K-N}\left[x_{o}[n]\right] & N \leq K<2 N\end{cases}
$$

Problem 3

i) We show that it is not summable. On the contrary, assume that it is summable. Then for every $\varepsilon>0$, there exists a finite set $J_{\varepsilon} \in \mathbb{N}$ such that for every finite set $K \in \mathbb{N}$, $\left|\sum_{n \in K} a_{n}\right|<\varepsilon$ if $K \cap J_{\varepsilon}=\emptyset$.

We show that it is not possible to have such J_{ε}. As J_{ε} is finite set in \mathbb{N}, then it has a maximum member. Let $M=\max J_{\varepsilon}$ then $J_{\varepsilon} \subseteq\{1,2, \ldots, M\}$. Define $K^{(L)}=$ $\{2 M, 2(M+1), \ldots, 2(M+L)\}$. $K^{(L)} \cap J_{\varepsilon}=\emptyset$ for all L values but:

$$
\sum_{n \in K^{(L)}} a_{n}=\frac{1}{2} \sum_{n=M}^{L+M} \frac{1}{n}>\frac{1}{2} \int_{M}^{M+L} \frac{1}{x} d x+\frac{1}{2 M}=\frac{1}{2} \ln \frac{M+L}{M}+\frac{1}{2 M} .
$$

The inequality could be easily verified similar to what we did in Problem (2.b) in homework 1. Hence,

$$
\sum_{n \in K^{(L)}} a_{n}>\frac{1}{2} \ln \left(1+\frac{L}{M}\right)+\frac{1}{2 M} .
$$

For arbitrary large $L,\left|\sum_{n \in K^{(L)}} a_{n}\right|$ could take any large value. Therefore, there exists many $K \in \mathbb{N}$ such that $K \cap J_{\varepsilon}=\emptyset$ and $\sum_{n \in K} a_{n}>\varepsilon$ for every finite J_{ε} and $\varepsilon>0$.
ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ is absolutely convergent if $\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent.
$\sum_{n=1}^{\infty} \frac{1}{n}$ is harmonic series and in the Problem (2.b) of homework 1 we have shown that it is divergent. Hence, $\sum \frac{(-1)^{n}}{n}$ is not absolutely convergent. However, it is convergent.
iii) Let's begin with the sufficient condition. If $\sum_{n=1}^{\infty} a_{n}$ converge absoutely, then $\left\{a_{n}\right\}$ is summable.

Consider $S_{n}=\sum_{i=1}^{n}\left|a_{i}\right|$. Since $S_{n}<\infty$ (it is bounded) and S_{n} is an increasing sequence, then it converges to a value, call it S. In other words, for every $\varepsilon>0$,

$$
\exists M(\epsilon) \in \mathbb{N} \text { such that } n \geq M(\epsilon):\left|\sum_{i=1}^{n}\right| a_{i}|-S|<\varepsilon
$$

For a given $\varepsilon>0$, let $n=M(\epsilon)$. Thus,

$$
\left|\sum_{i=1}^{M(\epsilon)}\right| a_{i}|-S|=\left|\sum_{i=1}^{M(\epsilon)}\right| a_{i}\left|-\sum_{i=1}^{\infty}\right| a_{i}| |<\varepsilon
$$

But $\sum_{i=1}^{M(\epsilon)}\left|a_{i}\right|-\sum_{i=1}^{\infty}\left|a_{i}\right|=\sum_{i=M(\epsilon)+1}^{\infty}\left|a_{i}\right|$. Therefore, $\sum_{i=M(\epsilon)+1}^{\infty}\left|a_{i}\right|<\varepsilon$. Let $J_{\varepsilon}=$ $\{1,2, \ldots, M(\epsilon)\}$, then every finite set $K \in \mathbb{N}$ such that $K \cap J_{\varepsilon}=\emptyset$ is a subset of $\{M(\epsilon)+1, M(\epsilon)+2, \ldots\}$ and consequently,

$$
\sum_{i \in K}\left|a_{i}\right|<\sum_{i=M(\epsilon)+1}^{\infty}\left|a_{i}\right|<\varepsilon .
$$

It means that $\left\{a_{i}\right\}$ is summable.
Now, we prove the necessary condition. If $\left\{a_{n}\right\}$ is summable, then $\sum a_{n}$ converges absolutely.

Let us first assume that $\left\{a_{n}\right\}$ is a real sequence. If $\left\{a_{n}\right\}$ is summable, for a given $\varepsilon>0$, there exists J_{ε} such that for every K finite set and $K \cap J_{\varepsilon}=\emptyset:\left|\sum_{n \in K} a_{n}\right|<\varepsilon$.
Consider a given set K. We split it into the finite set K^{+}with positive elements and the finite set K^{-}with negative elements. Therefore, $K^{+} \cap J_{\varepsilon}=\emptyset$ and $K^{-} \cap J_{\varepsilon}=\emptyset$. Then :

$$
\begin{aligned}
\left|\sum_{n \in K^{+}} a_{n}\right|= & \sum_{n \in K^{+}}\left|a_{n}\right|<\varepsilon \\
& \Rightarrow \sum_{n \in K^{+} \cup K^{-}=K}\left|a_{n}\right|<2 \varepsilon \\
\left|\sum_{n \in K^{-}} a_{n}\right| & =\sum_{n \in K^{-}}\left|a_{n}\right|<\varepsilon
\end{aligned}
$$

Therefore, for every finite set K such that $K \cap J_{\varepsilon}=\emptyset$:

$$
\sum_{n \in K}\left|a_{n}\right|<2 \varepsilon .
$$

Since we can take K arbitrarily large, thus $\sum_{n \in \mathbb{N}}\left|a_{n}\right|=\sum_{n \in J_{\varepsilon}}\left|a_{n}\right|+\sum_{n \notin J_{\varepsilon}}\left|a_{n}\right|$ is bounded and then it is absolutely convergent.

For the complex sequence, every complex sequence can be written as a summation of two (real and imaginary) sequences :

$$
a_{n}=x_{n}+j y_{n}, x_{n}, y_{n} \in \mathbb{R}
$$

where $\left|x_{n}\right|<\left|a_{n}\right|$ and $\left|y_{n}\right|<\left|a_{n}\right|$ and $\left|a_{n}\right|<\left|x_{n}\right|+\left|y_{n}\right|$.
It can be easily verified that if $\left\{a_{n}\right\}$ is summable then $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are summable and consequently $\sum x_{n}$ and $\sum y_{n}$ are absolutely convergent. Hence, $\sum\left|a_{n}\right|<\sum\left|x_{n}\right|+$ $\sum\left|y_{n}\right|<\infty$ is absolutely convergent.

Problem 4

i) We are looking for the coefficients $\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right\}$ such that:

$$
\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{n} x_{n}=0 \quad \forall x \in[0,1]
$$

If $\alpha_{n} \neq 0$, then the above polynomial with degree n has at most n different solutions but it should be zero for all $x \in[0,1]$. Therefore, it is not possible unless all coefficients are equal to zero. Thus, $\left\{1, x, \ldots, x^{n}\right\}$ are linearly independent.
ii) To find the orthonormal basis for a given set of vectors, we use Gram-Schmidt procedure. In the space of $C[0,1]$ define $v_{0}=1, v_{1}=x^{1}, \ldots, v_{n}=x^{n}$.
Then $u_{0}(x)=\frac{v_{0}}{\left\|v_{0}\right\|}=1,\left\|v_{0}\right\|=\sqrt{<1,1\rangle}=\sqrt{\int_{0}^{1} 1 d x}=1$

$$
\begin{gathered}
u_{1}(x)=\frac{v_{1}-<u_{0}, v_{1}>u_{0}}{\left\|v_{1}-<u_{0}, v_{1}>u_{0}\right\|}=\frac{x-<1, x>}{\|x-<1, x>\|} \\
<1, x>=\int_{0}^{1} x d x=\frac{1}{2},\left\|x-\frac{1}{2}\right\|=\sqrt{<x-1 / 2, x-1 / 2>}=\sqrt{\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x}=\frac{1}{\sqrt{12}}
\end{gathered}
$$

Therefore, $u_{1}(x)=\sqrt{12}(x-1 / 2)$.
The other orthonormal elements of the basis can be made by the following recursion :

$$
u_{\ell}(x)=\frac{x^{\ell}-\sum_{i=0}^{\ell-1}<x^{\ell}, u_{i}(x)>u_{i}(x)}{\left\|x^{\ell}-\sum_{i=0}^{\ell-1}<x^{\ell}, u_{i}(x)>u_{i}(x)\right\|} .
$$

iii) By the projection theorem, $v_{p} \in B$ is the projection of a vector v in the Hilbert subspace B, if

$$
\left\|v-v_{p}\right\|=\inf _{w \in B}\|v-w\| .
$$

To find a polynomial with degree $n, P_{n}(x)$, which has the minimum total squared error with $p(x)$, i.e. $\left\|p(x)-P_{n}(x)\right\|^{2}$, we should look for the projection of $p(x)$ in the Hilbert space of all polynomial functions of degree n with the norm $\|\cdot\|$.
Assume that $P_{n}(x)=\sum_{i=0}^{n} b_{i} u_{i}(x)$, then :

$$
b_{i}=<P_{n}(x), u_{i}(x)>=<p(x), u_{i}(x)>=\int_{0}^{1} p(x) u_{i}^{*}(x) d x .
$$

iv) We should find the projection of $\sin \frac{\pi}{2} x$ in the space of polynomials with degree 2 . The orthonormal basis $\left\{u_{0}(x), u_{1}(x), u_{2}(x)\right\}$ is equal to :

$$
\begin{aligned}
& u_{0}(x)=1 \\
& u_{1}(x)=\sqrt{12}(x-1 / 2) \\
& u_{2}(x)=\frac{x^{2}-<x^{2}, 1>-<x^{2}, u_{1}(x)>u_{1}(x)}{\left\|x^{2}-<x^{2}, 1>-<x^{2}, u_{1}(x)>u_{1}(x)\right\|}=6 \sqrt{5}\left(x^{2}-x+1 / 6\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& b_{0}(x)=<\sin \frac{\pi}{2} x, 1>=\int_{0}^{1} \sin \pi / 2 x d x=\frac{2}{\pi}, \\
& b_{1}(x)=<\sin \frac{\pi}{2} x, u_{1}(x)>=\sqrt{12} \frac{4}{\pi^{2}}-\sqrt{12} \frac{1}{\pi}, \\
& b_{2}(x)=<\sin \frac{\pi}{2} x, u_{2}(x)>=6 \sqrt{5}\left(\frac{4}{\pi^{2}}-\frac{16}{\pi^{3}}\right)+\frac{2 \sqrt{5}}{\pi} .
\end{aligned}
$$

The two last are concluded since :

$$
\begin{aligned}
\int_{0}^{1} x \sin \frac{\pi}{2} x d x & =\left.\frac{-2 x}{\pi} \cos \frac{\pi}{2} x\right|_{0} ^{1}+\frac{2}{\pi} \int_{0}^{1} \cos \frac{\pi}{2} x d x \\
& =\left.\frac{4}{\pi^{2}} \sin \frac{\pi}{2} x\right|_{0} ^{1}=\frac{4}{\pi^{2}} \\
\int_{0}^{1} x^{2} \sin \frac{\pi}{2} x d x & =\left.\frac{-2 x^{2}}{\pi} \cos \frac{\pi}{2} x\right|_{0} ^{1}+\frac{4}{\pi} \int_{0}^{1} x \cos \frac{\pi}{2} x d x \\
& =\left.\frac{8}{\pi^{2}} x \sin \frac{\pi}{2} x\right|_{0} ^{1}-\frac{8}{\pi^{2}} \int_{0}^{1} \sin \frac{\pi}{2} x d x \\
& =\frac{8}{\pi^{2}}+\left.\frac{16}{\pi^{3}} \cos \frac{\pi}{2} x\right|_{0} ^{1} \\
& =\frac{8}{\pi^{2}}+\frac{16}{\pi^{3}}
\end{aligned}
$$

Figure 1: Plot of $\sin \frac{\pi}{2} x$ and its approximated polynomials of degree 2 and 3.

We solved the two integrals by using integration by part. Finally,

$$
P_{2}(x)=b_{0}+b_{1} u_{1}(x)+b_{2} u_{2}(x)=-0.024+1.878 x-0.834 x^{2} .
$$

If we proceed one degree more, the degree 3 approximated polynomial is :

$$
P_{3}(x)=P_{2}(x)+b_{3} u_{3}(x)=-0.002+1.6134 x-0.1724 x^{2}-0.4413 x^{3} .
$$

In figure 1 , the plots of $\sin \frac{\pi}{2} x, P_{2}(x)$ and $P_{3}(x)$ are depicted. We can see that $P_{3}(x)$ is located very close to $\sin \frac{\pi}{2} x$.

