Measuring information beyond communication theory. Why some generalized information measures may be useful, others not

J. ACZEL

April 20, 2011

Common model

Measuring information beyond communication theory. Why some generalized information measures may be useful, others not
J. ACZEL

- Messages
- Frequencies
- Coding
- Entropy
$H_{n}\left(p_{l}, \cdots, p_{n}\right)=-\sum^{n} p_{k} \log p_{k}$

Properties

- Bounded, nonnegativity
- Subadditivity(Additivity): $H(P Q) \leq H(P)+H(Q)$
- Conditional Entropy: $H(P Q)=H(P)+H(Q \mid P)$
- Mutual Information: $I(P, Q)=H(Q)-H(Q \mid P)$

Source Entropy

- Source entropy:

$$
H^{\infty}=\lim _{r \rightarrow \infty} H\left(P^{r}\right) / r=\lim _{r \rightarrow \infty} H\left(P / P^{r-1}\right)
$$

- Bounded, nonnegative.
- Expansibility
- Recursivity(Branching property)
$H_{n+1}\left(p_{1} * q_{1}, p_{2} * q_{2}, p_{2}, \cdots, p_{n}\right)=$ $H_{n}\left(p_{1}, \cdots, p_{n}\right)+p_{1} * H_{2}\left(q_{1}, q_{2}\right)$

Other Measures

- Subadditivity, additivity, expansibility:

$$
a * \log \sharp\left(p_{k} \neq 0\right)+b \sum^{n} p_{k} * \log p_{k}(a \geq 0 \geq b)
$$

- Replace the subadditivity by its generalization: $H(P Q \mid R) \leq H(P \mid R)+H(Q \mid R)$ then $a=0$

Forecasting theory. Divergence

Measuring information

- $\sum^{n} p_{k} * f\left(q_{k}\right) \leq \sum^{n} p_{k} * f\left(p_{k}\right)$
- $f(q)=a * \log q+b$
- $\sum^{n} p_{k} * f\left(p_{k}\right)=a * \sum^{n} p_{k} * \log p_{k}+b$
- Directed divergence $\sum^{n} p_{k} * \log \left(p_{k} / q_{k}\right)$

Sum-Form

Measuring information beyond communication theory. Why some generalized information measures may be useful, others not
J. ACZEL

- $H_{n}\left(p_{1}, \cdots, p_{n}\right)=\sum^{n} \phi\left(p_{k}\right)$
- Branching Property: $H_{n}\left(p_{1}, p_{1}, p_{2}, \cdots, p_{n}\right)=$ $H_{n-1}\left(p_{1}+p_{2}, \cdots, p_{n}\right)+J_{n}\left(p_{1}, p_{2}\right)$

Expected Information

Measuring information

- ${ }^{\Psi} H_{n}\left(p_{1}, \cdots, p_{n}\right)=\Psi^{-1}\left(\sum^{n} p_{k} * \Psi\left(-\log p_{k}\right)\right)$ where $\Psi] 0, \infty[\rightarrow R$ is continuous and strictly increasing.
- Renyi Entropy: ${ }_{a} H_{n}\left(p_{1}, \cdots, p_{n}\right)=\frac{1}{1-a} * \log \sum^{n} p_{k}{ }^{a}$

Mixed theory of information

Measuring information

- Events+Messages
- $H_{n}\left\{\frac{E_{1}, \cdots E_{n}}{p_{1}, \cdots p_{n}}\right\}\left(E_{j} \bigcap E_{k}=\emptyset\right.$ if $\left.j \neq k, p_{k} \geq 0, \sum^{n} p_{k}=1\right)$
- $a * \sum^{n} p_{k} * \log p_{k}+\sum^{n} p_{k} * g\left(E_{k}\right)-g\left(\bigcup^{n} E_{k}\right)$

