Measuring information beyond communication theory. Why some generalized information measures may be useful, others not

J. ACZEL

April 20, 2011

Measuring information beyond communication theory. Why some generalized information measures may be useful, others not

J. ACZEL

Int

Common model

- Messages
- Frequencies
- Coding
- Entropy

$$H_n(p_l, \cdots, p_n) = -\sum^n p_k log p_k$$

Measuring information beyond communication theory. Why some generalized information measures may be useful, others not

J. ACZEL

Properties

- Bounded, nonnegativity
- ▶ Subadditivity(Additivity): $H(PQ) \le H(P) + H(Q)$
- ▶ Conditional Entropy: H(PQ) = H(P) + H(Q|P)
- ▶ Mutual Information: I(P, Q) = H(Q) H(Q|P)

Measuring information beyond communication theory. Why some generalized information measures may be useful, others not

J. ACZEL

Source Entropy

- Source entropy: $H^{\infty} = \lim_{r \to \infty} H(P^r)/r = \lim_{r \to \infty} H(P/P^{r-1})$
- Bounded, nonnegative.
- Expansibility
- Recursivity(Branching property) $H_{n+1}(p_1 * q_1, p_2 * q_2, p_2, \cdots, p_n) = H_n(p_1, \cdots, p_n) + p_1 * H_2(q_1, q_2)$

Measuring
information
beyond
communication
theory. Why some
generalized
information
measures may be
useful, others not

J. ACZEL

Other Measures

- Subadditivity, additivity, expansibility: $a*log\sharp(p_k \neq 0) + b\sum^n p_k*logp_k \ (a \geq 0 \geq b)$
- ▶ Replace the subadditivity by its generalization: $H(PQ|R) \le H(P|R) + H(Q|R)$ then a = 0

Measuring information beyond communication theory. Why some generalized information measures may be useful, others not

J. ACZEL

Forecasting theory. Divergence

- f(q) = a * log q + b
- ▶ Directed divergence $\sum_{k=0}^{n} p_{k} * log(p_{k}/q_{k})$

Measuring information beyond communication theory. Why some generalized information measures may be useful, others not

J. ACZEL

Sum-Form

- $H_n(p_1,\cdots,p_n) = \sum^n \phi(p_k)$
- ▶ Branching Property: $H_n(p_1, p_1, p_2, \dots, p_n) = H_{n-1}(p_1 + p_2, \dots, p_n) + J_n(p_1, p_2)$

Measuring information beyond communication theory. Why some generalized information measures may be useful, others not

J. ACZEL

Expected Information

- ▶ $\Psi H_n(p_1, \dots, p_n) = \Psi^{-1}(\sum^n p_k * \Psi(-log p_k))$ where $\Psi]0, \infty[\to R$ is continuous and strictly increasing.
- ► Renyi Entropy: ${}_aH_n(p_1, \cdots, p_n) = \frac{1}{1-a} * log \sum^n p_k{}^a$

Measuring information beyond communication theory. Why some generalized information measures may be useful, others not

J. ACZEL

Mixed theory of information

information beyond communication theory. Why some generalized information measures may be useful, others not

J. ACZEL

Measuring

Intr

Events+Messages

▶
$$H_n\{\frac{E_1, \dots E_n}{p_1, \dots p_n}\}$$
 $(E_j \cap E_k = \emptyset \text{ if } j \neq k, p_k \geq 0, \sum^n p_k = 1)$

$$a*\sum^n p_k*logp_k + \sum^n p_k*g(E_k) - g(\bigcup^n E_k)$$

