INFORMATION AND CONTROL 2, 101-112 (1959)

Some Inequalities Satisfied by the Quantities
of Information of Fisher and Shannon'

A. J. Stam

Physics Laboratory of the Netherlands Defence Resear.ch Council,
The Hague, Netherlands :

A certain analogy is found to exist between a special case of Fisher’s

quantity of information I and the inverse of the “‘entropy power’’ of

Shannon (1949, p. 60). This can be inferred from two facts: (1) Both
quantities satisfly inequalities that bear a certain resemblance to

each other. (2) There is an inequality connecting the two quantities.

This last result constitutes a sharpening of the uncertainty relation

of quantum mechanics for canonically conjugated variables. Two

of these relations are used to give a direct proof of an inequality of
Shannon (1949, p. 63, Theorem 15). Proofs are not elaborated fully.
Details will be given in a doctoral thesis that is in preparation.

LIST OF SYMBOLS

I(p) Fisher’s quantity of information for the probability den-
Sityp(xlr e )x"’o)

I(g) The special case of I arising for n = 1, p(z,0) = g(z — 0)

H(p) Shannon’s quantity of information in natural units, refer-

k,_ ring to the probability density p(z1, -+, z,). In Section
w 6, however, we denote it by H(z,, --- , z.).

N(p) Entropy power. N(p) = exp [2H(p)]/2xe

¢ (p) Variance of the probability density p(z)

¥(z), o(u) A pair of Fourier transforms [see (1.11)] with norm 1.

F Complex conjugate of 2.

1. INTRODUCTION

Fisher’s quantity of information (Fisher, 1925; Pitman, 1936) is de-

‘fined by

I(p) = —

2 . :
fp(xly Tty Ty ,0) :72111 p(xly "‘,27,.0) dxl e dxn (1-1)

! This investigation was suggested by Prof. J. L. van Soest, Director of Physical
Research of the Netherlands Defence Research Council.
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Here p is an n-dimensional probability density depending on the param-
eter 6. Under certain conditions (roughly speaking, if p is continuous
and the boundaries of the z set where p > 0 do not depend on 6) we
can write

_ 1 op(zy, -+, 20 )Y
I(p) -fp(th’w)( L ) dzy -~ dze (12)

It is well known that for independent variables 7 is additive: if
p(xl 1°° 3 Tn )0) = I-I; P;‘(x;‘ :0)

we have
I0) = £ 1) (13)

If p depends only on z; — 6 (¢ = 1,--- ,n) then 8 drops from I. If, for
n = 1, we have p(2,0) = ¢(x — 6), then

I(p) = f q—(l;) q*(z) dx (14)

where / denotes differentiation with respect to =. In what follows we will
use only the special case (1.4). We give it the notation Zo(¢). Any time
we use this quantity it will be understood that g satisfies the conditions:

(i) g>0 for —0 <z < o
(ii) ¢ exists
(iii) The integral (1.4) exists, i.e, ¢’ -0 rapidly enough forz — =+,

These conditions also guarantee the equality of (1.1) and (1.2) and they
are sufficient to allow the application of the theory of sufficient statistics
as given by Fisher (1925) and Pitman (1936).

In this theory the following fact is proved: Let T'(z; ,- -« , z) be any
function of z;,- - -,z and let A(T,0) be the probability density for T
as derived from the ,,: - - , z. distribution p(z;, -, 2. ,0). Then

I(h) = I(p) (1.5)
with equality if and only if

dIn p(z1, -+, 2a 8) = F(T,.) (1.6)
) 7] ’ a
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The quantity Io(q) is a measure for the “sharpness” of the distribution
g(z). If g(x )is Gaussian, Iy(q) is equal to 1/¢* and if we “contract” the
distribution q over a factor X, Io(g) is multiplied by A%. The same facts
hold for I/N, where N is the entropy power defined by N =exp (2H)/
2xe (Shannon 1949, p. 69). This fact suggests some connection between
these quantities, and part of this paper will be devoted to finding some
more  connections  between  them.

The quantity 7y(g) can be written in a way that is known from the
formalism of quantum mechanics. If we put q(x) = [¢(z) | with ¢ a
complex function with norm 1, we have

L) =4[ {%:—l}zdx (L7)

But for any real uy we have also

1) - 4 {;‘x

For any complex function f(z) of real £ we have
alfIY _dfdf z( )
( dx ) dz dz — IS argj

I(q) < 4 /'d'//exp ij 2riuor) dy expd(x2nuox) (19)

¥ exp (—2niupr) l}adx (1.8)

with equality if and only if
arg ¥ = 2xiuer + const (1.10)

If now ¢(z) and ¢(u) are a pair of Fourier transforms:

¥(z) = f e(u) exp (2xiux) du
(1.11)
o(u) = | ¥(z) exp (—2xtuzx) dx

one finds that the right side of (1.9) is equal to 16x"¢"( | ]2) where

Ao = [ (u =l o) du (112)
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that is, o°( | ¢ |) is the variance of the “momentum canonically conju-
gate to z.” So

I(q) £ 16x0°(|e[") (1.13)
with the case of equality specified by (1.10).
2. STATEMENT OF RESULTS
A relation to be proved in the next sections is
Io(p) 2 1/¢*(p) (2.1)

with equality if and only if p is Gaussian.” We have now to compare
this fact with the maximizing of H by the Gaussian distribution expressed
by

1/N(p) 2 1/¢*(p) (2.2)
The relation (2.1) can be sharpened by
I(p) 2 1/N(p) (23)

Again, when p is Gaussian there is equality.
If we put p = | ¢ |*, as in Section 2, we can, making use of (1.13), set
up a chain of inequalities in | ¢ [ and | ¢ [*:

1S N(YDIE) S T E) o <1620l (5

The weakest of these inequalities is the usual formulation of the uncer-
tainty principle. The sharpening

16°N(|¥ [ (lel) =1 (2.5)
is the most interesting for it suggests a further sharpening:

?
16°N([¢ I N (lel) 21 (2.6)

or’

?
H(|vH+H(le)21-n2 (X))

* Formula (2.1) is nothing but a special case of the Cramér-Rao inequality.
However, it may be of interest in its connection with a sequence of sharpening
formulations of the uncertainty principle (2.4).

% In fact the value (1 — In 2) is attained for ¢(z) = (2x0?)~1/* [exp(—2?/2s2) 1.
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However, the author has not been able to prove more than
H(|[¢[)+H(|e[)z0 (2.8)

Another inequality for I, is derived from the theory of sufficient statis-
ties. Let r(z) be the convolution of the probability densities p,(z;),
where ¢ = 1,---  n; that is, z is the sum of the independent random
variables z; ,- -+ , 2, . ‘

r(z) = fpn(xl) o Paa(@a)Palz — 3 — - 2ay) day -+ diyy

- Then we have for any positive real numbers Qryc e,y

n

L 2
{Zl as} I(r) = Zx oilo(ps) (2.9)
with equality if and only if the p; are Gaussian with varianees propor-
| tional to the a; :

dz(p; = Ca; (2.10)\

There is a certain analogy, though less striking than in (2.1), to an
inequality for N, viz., the inequality of Shannon® (1949, p. 63, Theorem
15) -

N(r) 2 2271 N(ps) (2.11)

We will make use of (2.9) to give a direct proof of (2.11). For this pur-
pose we need another important relation. Let p.(x) be the convolution
of 2 probability density p(z) with a Gaussian probability density hav-

ing variance v. Then

dH(p,)
dv

The relations (2.3) and (2.12) were communicated to Prof. van Soest,

by Prof. N. G. de Bruijn who gave a variational proof of (2.3) and used
(2.3) and (2.12) to give a direct proof of (2.11) for the case that all

It was pointed out to the author by Prof. De Bruijn that (2.9) is equivalent
to:

- %I.,(p,) (v >0) (212)

1/10(1‘) = éx I/Io(p.')

shich is a better analogy to (2.11).
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but one of the p; are Gaussian. We will reverse this order and derive
(2.3) from (2.11).

All these results could be generalized to multidimensional distribu-
tions. Here this will be done only for (2.11) where we will not generalize
the proof but show by induction that the inequality holds for multidi-
mensional probability densities.

3. PROOF OF (2.1)

We follow the line of the proof of Theorem 226 of Hardy et al. (1952,
p. 165). If h is a differentiable complex function of z on (~ «, ) with

lim,, i, (¢ h=0"
we find by partial integration

[19Pwaz=—2[nivilvla
Applying the Schwarz inequality, we have
|[[ivrwal safinrivrax[ivre  ap
with equality if and only if
AR ¥l =Blv|?

arg h [¥||¥| = const
These conditions are equivalent to
| l¥l" = Chlv|
or
| ¥(z) | = aexp (Bh(z)) (32)

Forh = z — %, (3.1) becomes something like Weyl’s inequality (Weyl,
1949):

{[1vra) s4f@-arivrasx [1vra

which by (1.7) goes over into (2.1).
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4. PROOF OF (2.9)
In (1.5) we take p(z1, -+ ,2.,0) = J]71 qi(z: — 6) and
T= Z:‘l—l T .
Then one has
WT0) = r(T — 025 &)
where r is the convolution of the probability densities p; defined by
pi(z) = Vagi(z/a:) (i=1,--,n)
the relation (1.5) becomes now '
{i a;}’ f 1 r*(2) dz < ifiq:’(x) dz
=t r(z) i=1J gi(z)

By substituting ¢:(z) = api(axz) we arrive at (2.9). By (1.6) there is
equality if and only if

& gi'(z: — 0)

Halm—g ~Femt o tan,0

From this condition can be derived the well known fact that the ¢: have
to be Gaussian with variances o’(¢;) = C/a:. As o*(p;) = ae*(q:)
the conditions in the p; are

Uz(Pi) = Cay
5. THE RELATION (2.12)
We have ,,

p.() = [ p(2)(200) ™ exp (= (z — 2)"/20) da

By differentiation under the integral sign one sees that
dp.(2) _ 1dp,(2)

B 3 gz (»>0) (51)
from which (2.12) is derived by partial integration in
dH(p,) _ _f dp,(2)
T— (I-I-lnp,)sz



It is clear that p has to satisfy some conditions in order that the
operations carried out above are allowed and p, satisfies the conditions
(i), (ii), (iii) of section 1. We shall not set up these conditions here but
only remark that they can be much weaker than (i), (ii), (iii) of section
1. It is not required that p be differentiable or even continuous every-
where or that p > 0 on (— o, ).

6. PROOF OF (2.11)

It is sufficient to prove (2.11) for n = 2. For higher n the inequality
follows by repeated application of the case n = 2. Let p,q be probability
densities and p» , ¢ the convolutions of p, ¢ with Gaussian probability
densities having variances f(\), g(A). The functions f and g depend on
the parameter \. So far we have only supposed that f and g are positive
and have positive derivative for A > 0 and that f(0) = ¢(0) = 0.
Now consider the ratio

expl 2H(p)] + exp [2H ()]
exp [2H(r\)]

V(z) =
with
n(@ = [ m@ale - o) dz

Evidently
V(0) = {N(p) + N(9)}/N(r)
By (2.12) we have

AVO) rp [2H ()] = 5 0 o) expI2H (p)] +' 0 Lo exp 2 @)

— Io(n){f'(\) + g'(M\)} {exp [2H(p)] + exp [2H ()]}
Applying (2.9) with
o = (‘f’)”2 exp [H(m)]  a = (¢")" exp [H(q)]
we have

dv(\)
d\

exp [2H (n))/1o(n) 2 {(f)* exp [H(p)] 61)

+ (¢) " exp (H(@)}* — (/' + ¢')exp [2H(p;)] + exp [2H ()]}
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Now we choose the functions f and g so that

F'(\) =exp[2H(p)] ¢ () = exp 2H(q)] (6.2)
For this choice of f and g we have
dvV(z)/dx z 0

For any specified value of A there is equality in (6.1) if and only if 23
and ¢ are Gaussian. But then p and ¢ have to be Gaussian and (6.1)
#an equality for all X. So V(A) is either strictly increasing or a constant.
We still have to verify the conditions (2.10) for equality in (6.1):

*(m) = e(Nex = ¢(A) exp [2H(p)]
(@) = c(N)ez = ¢(A) exp [2H(q))
They are satisfied by c¢(A\) = 2we.
As V(\) is continuous from the right in A = 0 we have
¥(0) = {exp [2H(p)] + exp [2H()]} exp [-2H(r)] £ lim.,V(})

- with equality if and only if p and ¢ are Gaussian.
From (6.2) it is clear that

limy. f(A) = lim.g(A) =

The fact that limy., V() exists and is equal to 1 can be proved easily,
making use of the fact that p, ¢, . “become more and more Gaus-
sian.”

i

7. EXTENSION OF (2.11) TO m-DIMENSIONAL
PROBABILITY DENSITIES

The inequality as given by Shannon (1949, p. 63, Theorem 15) is
y 2
exp[%H(z;, - ,z,..)] = exp[;n—H(xl, e 2:..)]

(7.1)
e[, 50
m ’ y Im
where (21, ---, Zm), (%1, -+, ym) are independent m-dimensional
random vectors and (2;, --- , 2,) their sum.

We give an outline of a proof by induction. For m = 1, (7.1) was
proved in Section 6. The ease m + 1 can be derived from the case m as
follows: If we write &, n, & for (21, -« , Zm), (N1, ** " s Um), (21 ) "+ , Zm)
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and z, y, 2 fOr Tmi1, Ymsr, Zmp we have, in the notation of Shannon
(1949, p. 54),

H(z, -+, Tmpn) = H(E) + He(z)
H(ys, -+, ymu) = H(n) + Hy(y) (7.2)
H(z1, o+ 2ma) = H(E) + Hy(2)

where

He(z) = [ p(©)aH(z | &) e dn

H() = [ p@®anH( | n) dgdn

H(z|t), H(y|=n) are the entropies for the conditional probability
densities of x and y for given £ and 5. We also define

Hole) = [ p(®emHG | &n) dt dn (73
Applying the inequality for m = 1 to the conditional probability densi-
ties of z, y, and z = z + y for given £, n we have

exp [2H(z | £9)] 2 exp [2H(z | £)] + exp [2H(y | 1)]

Substituting this in (7.3) and applying Theorem 185 of Hardy et al.
(1952), we find

exp [2Hi4(2)] 2 exp [2Hy(2)) + exp [2H,(y)]  (74)

By the usual methods for proving inequalities for conditional entropies
one has

Hi(z) 2 Hyq(2) (7.5)
So

2
exp[m TiH@, 2-.+1)]

(76)

zexp[ +1m H() + _1|_12Hs.(z)]

Substituting into (7.6) the relation (7.4) and the assumption of indue-
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tion ((7.1) for m) and using Hardy, Littlewood, Pélya, 1952, Theorem
10, we have

exp[ _2'_1H(z1, ,zm+1)]

2 exp [————— ~H() + ——

Fim + m+ 1 ZH‘(x)]

+ exp {m 1_':_ H(q) + —Tl 2H.(y)}

= exp {[ T lH(xl, ,x,..+1)]+exp[ T 1H(y,, ,y,.“)]}

8. PROOF OF (2.3) AND (2.8)
If Io(p) exists we have by (2.12)

I(p) exp [2H(p)] = d_e_}i_ngi(_zzg_l Lo

= 9me lim &P 2H(p.)] — exp [2H(p)]
o0 2xev

From (2.11) with ¢ a Gaussian probability density with variance » we
wee that the right side is greater than or equal to 1.

We can derive (2.8) from the analogue for Fourier integrals of the
Hausdorfi-Young inequality. For a pair of Fourier transforms (1.11)
wehave,if 1 <k S 2and ¥’ = k/k — 1,

[ f 2 dx]w =< [ f le I* du]m (8.1)

See Titchmarsh (1937, Chapter 1V, Theorem 74).° Writing k = 2 — 2¢,
the relation (8.1) becomes

(1~2¢)/ e —1/¢} —1
{f I 'I/ |2[1+¢I(l—2¢)l dx} -§ {[f l " l2(l—e) du] }

We pass to the limit for ¢ — 0 and from Hardy et al. (1952, Theorem 3)
—or rather its analogue for integrals’—we see that (2.8) holds.

* Formula (4.1.2.) of Titchmarsh (1937) contains a misprint. The multiplicative
constant arises from the fact that Titchmarsh uses a notation for Fourier trans-
forms that is different from (1.11) here.

¢ The limit a8 r — 0 of a mean of index r is the geometric mean.
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In connection with this proof it is perhaps interesting to make the
following remark: exp [—H(p)] is the geometric mean of p with relation
to p itself, or the mean of index 0 (M,) in the notation of Hardy et al.
(1952, Chapter II). The means of index r, M.(p,p), have some proper-
ties that are closely related to those of exp[ — H(p)]; for example, proper-
ties of convexity or concavity.® Further one can prove that of all
expressions F([G(p) dx, - - - dz,) with F, G functions of one real argu-
ment, only the generalized means M,.(p,p) are multiplicative in inde-
pendent random variables z,, --- , ..

After completion of this work and submission for publication, a referee
informed me of the paper by Hirschman, which contains a proof of my
Eq. (2.8) and hypothesizes Eq. (2.7), and also of the paper by Bourret
(1958), which comments on the physical implications of these results.

REecErveDp: July 28, 1958.
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