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The Shannon entropy of Sudoku matrices

By Paur K. NEWTON* AND STEPHEN A. DESALVO

Department of Aerospace and Mechanical Engineering and Department
of Mathematics, University of Southern California, Los Angeles,
CA 90089-1191, USA

We study properties of an ensemble of Sudoku matrices (a special type of doubly
stochastic matrix when normalized) using their statistically averaged singular values. The
determinants are very nearly Cauchy distributed about the origin. The largest singular
value is oy =45, while the others decrease approximately linearly. The normalized
singular values (obtained by dividing each singular value by the sum of all nine singular
values) are then used to calculate the average Shannon entropy of the ensemble, a
measure of the distribution of ‘energy’ among the singular modes and interpreted as
a measure of the disorder of a typical matrix. We show the Shannon entropy of the
ensemble to be 1.7331 £ 0.0002, which is slightly lower than an ensemble of 9 x 9
Latin squares, but higher than a certain collection of 9 x 9 random matrices used for
comparison. Using the notion of relative entropy or Kullback—Leibler divergence, which
gives a measure of how one distribution differs from another, we show that the relative
entropy between the ensemble of Sudoku matrices and Latin squares is of the order
of 107°. By contrast, the relative entropy between Sudoku matrices and the collection
of random matrices has the much higher value, being of the order of 1073, with the
Shannon entropy of the Sudoku matrices having better distribution among the modes.
We finish by ‘reconstituting’ the ‘average’ Sudoku matrix from its averaged singular
components.

Keywords: Sudoku matrices; Shannon entropy; singular value decomposition; random matrices;
Latin squares; Wishart matrices

1. Introduction

A Sudoku matrix A4 is a 9 x 9 real valued matrix with an integer between 1 and
9 in each entry, so long as the following constraints are obeyed:

— each integer can appear only once along any row,
— each integer can appear only once down any column, and
— each integer can appear only once in each of the nine 3 x 3 sub-blocks.

Without the last ‘regional’ constraint, the matrix is usually called a 9 x 9 Latin
square, whereas, without any of the constraints, if the integer in each entry is
chosen with equal probability of é, we call it a random matrix. It was recently
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Figure 1. An arbitrary Sudoku matrix. Each of the integers 1-9 appears only once down each
column, along any row, and in each of the 3 x 3 sub-blocks. With only the 27 darkened numbers
showing, a Sudoku game consists of filling in all the lighter coloured numbers to produce a complete
Sudoku matrix.

proven by Felgenhauer & Jarvis (2006) that there are exactly 6, 670, 903, 752, 021,
072, 936, 960 =9! x 722 x 27 x 27,704,267,971 ~ 6.67 x 10?! Sudoku matrices.
Their enumeration strategy begins by analysing the permutations of the top
3 x 3 sub-block used in valid Sudoku grids. Once these sub-block symmetries
and equivalence classes for the partial solutions are identified, the other sub-
blocks are constructed and counted for each equivalence class. Russell & Jarvis
(2006) showed that, if symmetries are taken into account (using Burnside’s
lemma), there are significantly fewer—only 5,472,730, 538 of them. Both of these
numbers are small compared with 9%, the total number of random matrices, or the
total number of 9 x 9 Latin squares, which is known to be O(10%") (Bammel &
Rothstein 1975). In fact, taking the ratio of Felgenhauer and Jarvis’ number
over 9% gives the minuscule empirical probability of 3.3927 x 10~%% of producing
a Sudoku matrix by using a random number generator to select each integer
entry independently, without explicitly building in the constraints. An example
of a Sudoku matrix is shown in figure 1 and can be found in many major daily
newspapers as a popular number game, whose modern version was apparently
invented by the American architect Howard Garns in 1979, but whose ancestry
dates back at least to Euler. A ‘Sudoku game’ starts with a few squares filled
in (for example, the darkened numbers in figure 1), and the reader must fill in
the rest (the lighter numbers in figure 1), obeying the above constraints to create
a Sudoku matrix, a classic problem in constrained combinatorial optimization
theory (Simonis 2005). If all but one of the squares are filled in initially, it is
easy to see that there is a unique value for the remaining square, and hence
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the final Sudoku matrix is unique and the problem is said to be well posed.
However, if none of the squares are filled in initially, there are many ways to fill
them in (ill posed) to arrive at a final Sudoku matrix, namely all of the ones
counted by Felgenhauer & Jarvis (2006). The fewest number of filled in squares
that renders the solution unique is unknown, although the lowest number yet
found is 17. The general problem of solving Sudoku puzzles on n? x n? boards
of n x n blocks is known to be NP-complete (Yato & Seta 2005). A rapidly
evolving discussion of the current state-of-the-art regarding the ‘mathematics
of Sudoku’ can be found at the http://en.wikipedia.org/wiki/mathematics
of sudoku.

In this paper, we focus on the statistical properties of Sudoku matrices, not
on strategies for solving Sudoku puzzles. Progress on computer algorithms to
solve Sudoku puzzles (using ‘Sinkhorn balancing’) are discussed in Moon et al.
(2009) and comprehensive strategies are described in Davis (2009). Here, we
mostly discuss average properties of ensembles of Sudoku matrices as opposed to
specific properties of individual matrices. Of course, we first highlight the main
properties that all Sudoku matrices making up an ensemble must share (discussed
in the next section). Given the constraints imposed on the entries, we address the
question of how random is a Sudoku matrix? We answer this question by creating
an ensemble of Sudoku matrices from which we study the statistically averaged
singular value distributions and Shannon entropy of the ensemble, which gives
us a scalar measure of how evenly distributed are the rank-1 matrices whose
linear combination constitutes an ‘average’ matrix, as detailed in the text. In §3,
we describe the algorithm we use to generate Sudoku matrices, one of which is
shown in figure 1. Section 4 discusses the singular value decomposition of Sudoku
matrices, which we then use to calculate their (average) Shannon entropy. For
comparison purposes, we calculate the Kullback—Leibler divergence between the
ensemble of Sudoku matrices and a corresponding ensemble of Latin squares and
random matrices.

2. Basic properties

The following properties hold for any Sudoku matrix:

— Because of constraint 1, every Sudoku matrix A has eigenvalue A =45,

with corresponding eigenvector n = (1,1,1,...,1)T.
— Because of constraint 2, the transpose of every Sudoku matrix AT has
eigenvalue A =45, with corresponding eigenvector n = (1,1,1,...,1)".

— Because of constraint 3, we have AT # A.

— Because of constraint 3, we have ATA # AAT, and A =452 is an eigenvalue
of the covariance matrices AAT and AT A.

— Because of constraint 3, we have 18 <trace(A) < 72. This is because the
smallest value for the trace in any 3 x 3 sub-block is 1 + 2 4+ 3 =6, while
the largest value is 7+ 8 + 9 = 24.

Sudoku matrices can be singular, as the following example shows.
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Example 2.1. The following Sudoku matrix has one eigenvalue that is zero,
with corresponding eigenvector £:

382
1723
—554
| -2
and &£=]-1148|. (2.1)
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Sudoku matrices can be highly structured, as in the following example.

Example 2.2. The following Sudoku matrix is produced with an initialized top
row containing values 1 — 9. The second row is obtained from the top row by
applying a left-shift of three entries (to accommodate the block constraint). The
third row is obtained from the second row by applying a left-shift of three entries.
The fourth row starts a new 3 x 3 block; hence, we obtain it from the top row by
applying a left-shift of one entry. Rows 5 and 6 are produced from the row above
by a left-shift of three entries. Row 7 starts a new block and is obtained from row
4 by applying a left-shift of one entry. The final two rows are obtained from the
rows above them by applying the left-shift of three entries. The result is a highly
structured yet valid Sudoku matrix,

1 234567809
456780912 3
78912345 6
934567809 1

A=|56 78 9 1 2 3 4f. (2.2)
891234567
34567891 2
6 7891 23 45
9123456 7 8

Remark 2.3. Every Sudoku matrix can be made into a doubly stochastic matrix
(row and column sums equal to 1) by dividing each entry by 45. This normalized
matrix M can then be viewed as a finite Markov chain with nine states, each of
which is recurrent and aperiodic (Grimmett & Stirzaker 2005). The stationary
distribution, a vector m such that 7+ M =, is a left eigenvector of M with
eigenvalue 1, and it follows immediately from basic property 2 that the vector
of all 1s is a left eigenvector of M; hence, normalizing to obtain a probability
distribution, we have w=(%,...,%). Note that Latin squares have the same
stationary distribution, as they satisfy basic condition 2 as well.

As an indication of the distribution of the eigenvalues (specifically, their
products), a histogram of the determinants of an ensemble of 10000 Sudoku
matrices (see §3 for the details of construction) is shown in figure 2 along with
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Figure 2. Histogram of determinants of 10000 Sudoku matrices which appears to closely follow
a standard Cauchy distribution, plotted as a solid curve. The sample median is —98820, and
the sample mean is —570352.2660, with standard deviation 0.56719630860983 x 108. The smallest
determinant from the sample is —551 886 210 while the largest is 355 398 840.

the sample mean, standard deviation and smallest and largest values from the
sample. Plotted together with the histogram is a Cauchy distribution

1 1
Fla)= 0l 8) =
which appears to closely model the data (if the entries are not selected uniformly,
this would not be the case). Recall that the Cauchy distribution has no defined
mean, variance or higher order moments, while its mode and median are c
(the peak of the distribution), with s being the scale parameter specifying the
half-width at half-maximum. Interestingly, the central limit theorem predicting
convergence to a Gaussian distribution does not apply because the variance is
not finite. Generically, the Cauchy distribution arises when we take the ratio
U/V of two independent Gaussian distributed random variables U, V, with
expected values 0 and unit variances. We use the parameter estimation techniques
described in Nagy (2006) to determine the parameter values s =2.155 x 107 and

(2.3)

c=—2.902 x 10°. The determinants from the sample range from £10%, with a
sample median value —98820. All of the members of the ensemble had either
rank 8 (somewhat special) or rank 9 (more typical) and we believe it is not
possible for a Sudoku matrix to have a zero eigenvalue with algebraic multiplicity
more than 1, but we have not been able to prove this. The recent article by Dahl
(2009) discusses other general properties of Sudoku matrices.

3. The Sudoku algorithm

(a) Algorithm description

An ideal (unbiased) random Sudoku generator would index each of the
approximately 10*! Sudoku matrices by an integer, and a uniformly distributed
random integer between 1 and 10*! would be chosen corresponding to one of the
matrices. The task of pre-assembling and working with 10*' matrices, however,
has obvious drawbacks.

Proc. R. Soc. A (2010)
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Instead, our algorithm for producing Sudoku matrices proceeds one row at
a time, starting with the first row and working down to the bottom. First, a
selection array consisting of the admissible integers 1-9 is created and an index
integer j between 1 and 9 is chosen at random, with uniform distribution. The
Jth number in the selection array is placed in row/column/block =r/c/b=1/1/1
of the Sudoku matrix. This entry is then deleted from the selection array, leaving
eight remaining entries. To select the next entry of the Sudoku matrix, a new
index integer is picked at random, this time between 1 and 8. This new index
is then used to choose the next member of the selection array and placed in
r/c/b=1/2/1 of the Sudoku matrix. The process continues until the top row of
the Sudoku matrix is filled and all entries of the selection array have been used.
The remaining rows are generated in a similar manner, one entry at a time, with
the additional preliminary step of reducing the set of admissible values based
on the constraints in the corresponding r/c/b. In the event of encountering an
entry with no possible admissible values, that entire row and the row preceding
it are deleted (called the ‘back-stepping’ procedure) and the process continues as
before, starting with the first empty row. As an alternative to the back-stepping
procedure, we could simply empty the matrix and re-start the algorithm from
scratch each time the algorithm runs into a dead end, but it is far faster and more
efficient to implement the back-stepping procedure, clearing only two rows. This
algorithm seems to be fast and efficient and can easily generate 10000 Sudoku
matrices in a matter of seconds (using C code on a laptop computer).

(b) Ensemble bias

The question is whether the algorithm produces an ensemble that is unbiased.
Namely, we need the smaller sample produced by the algorithm to have the same
statistical properties that a full ensemble of all 10?! matrices would have. For this,
we describe a necessary condition that any unbiased sample ensemble of Sudoku
matrices must have. The following simple facts are used. First, note that, given
any Sudoku matrix, a new Sudoku matrix can be produced by globally switching
any two numbers. For instance, we can switch the numbers 1 and 2 everywhere
in the Sudoku matrix (2.2), and the result of the switch will produce a new, less
structured, but valid Sudoku matrix. This gives us the following.

Lemma 3.1. Given a valid Sudoku matriz, we may construct an additional 9! — 1
distinct Sudoku matrices.

Proof. Consider the set of all permutations of the numbers 1-9, and create a
1-1 mapping from the set {1,...,9} to each of the permutations by matching the
nth entry in {1,...,9} to the nth entry in the permutation. For each permutation,
a distinct Sudoku matrix may be obtained by replacing the number in each
corresponding entry of the given Sudoku matrix with the corresponding entry
in the permutation. ]

An ensemble of Sudoku matrices produced this way is an equivalence class.

Lemma 3.2. If the values of all Sudoku matrices in an equivalence class are
averaged together component-wise, the resulting matrizx is the rank-1 matrix with 5
in each entry.

Proc. R. Soc. A (2010)
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Proof. The proof is clear by symmetry. Every entry will have each of the
numbers 1-9 in it an equal number of times in the ensemble of 9! — 1 matrices. W

Thus, as in equation (2.2), we can initialize a given Sudoku matrix by choosing
the matrix in the equivalence class that has the first row {1,2,3,4,5,6,7,8,9}.
Proceeding this way will give a standardized way of looking at the distribution of
matrices generated. Finally, since the matrices in each equivalence class average
to the rank-1 matrix with 5 in each entry, we can average these averages and
obtain the same matrix. This gives us the following.

Lemma 3.3. If the wvalues of all Sudoku matrices are averaged together
component-wise, the resulting matriz is the rank-1 matriz with 5 in each entry.

Therefore, we would like any subset of the full set of Sudoku matrices to inherit
this property.

Theorem 3.4. A necessary condition that a set of Sudoku matrices is unbiased
18 that the component-wise average of the ensemble produce the rank-1 matriz with
5 in each entry.

The extent to which the sample average deviates from this rank-1 average is a
measure of possible bias of the ensemble. Equation (3.1) shows the component-
wise average of 10% Sudoku matrices generated by the algorithm which is
acceptable for our purposes. Of course, more detailed and stringent tests could
be developed, as in those discussed in Jacobson & Matthews (1996) for Latin
squares, but we regard our relatively weak test sufficient for our purposes.

4.9982 4.9975 5.0020 4.9964 4.9995 5.0001 5.0022 5.0019 5.0022
5.0031 4.9976 5.0001 5.0014 5.0019 4.9999 5.0013 4.9973 4.9973
5.0017 4.9998 5.0001 5.0006 5.0003 4.9999 4.9985 4.9982 5.0010
5.0027 4.9997 5.0000 5.0000 5.0000 4.9970 4.9994 4.9998 5.0015
A=15.0011 4.9997 4.9969 4.9982 5.0020 5.0017 5.0000 5.0017 4.9986
5.0002 5.0010 4.9987 5.0031 4.9978 5.0002 4.9997 5.0002 4.9991
4.9980 5.0002 4.9995 5.0027 4.9974 4.9998 4.9999 5.0015 5.0010
4.9987 5.0034 5.0017 4.9983 4.9988 4.9995 4.9995 5.0005 4.9996
4.9962 5.0011 5.0011 4.9993 5.0024 5.0019 4.9995 4.9989 4.9996

(3.1)

4. Ensemble analysis

Our main tool in the analysis of Sudoku matrices is the singular value
decomposition and the resulting calculation of Shannon (1948) entropy for the
ensemble of matrices which we now describe.

(a) Singular value decomposition and Shannon entropy

To obtain the singular value decomposition of A, we find the nine eigenvalues
Ai, (i=1,...,9) of the associated covariance matrix AT A

ATAﬁiZAilji, (41)

Proc. R. Soc. A (2010)
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where A; > 0, v; € R%.! The singular values ¢, are defined as o; = +/2;. Equivalently,
one can define the singular values and singular vectors directly via the system of
linear equations

Aﬁiza,ﬁi,x, ATﬁizdiﬁi, (42)

where Opa =01 > 02>+ > 0pin =09 >0, and the unit vectors v; and u; are
called the right and left singular vectors, respectively. We use them as columns
to construct the 9 x 9 orthogonal matrices U, V defined as

U == (’l_il ’l_iQ A ﬂg), V == (51 1_}2 ct 1_}9), (4-3)

which produces the singular value decomposition of A (Kirby 2001; Trefethen &
Embree 2005)

9
A=UsV' =) o] (4.4)

i=1
Y is the diagonal matrix with singular values down the diagonal, ordered from

largest (top left) to smallest (bottom right), with corresponding right and left
singular vectors filling in the columns of V and U from left to right,

Omax 0 -+ 0 0
0 o - 0 0
=1 : S B (4.5)
0 -+ -~ a5 O
0 oo i 0 opm

From equation (4.4), one can see that the singular value decomposition expresses
A as the sum of rank-1 matrices, and does so in an optimal way. Namely, if we
define the rank-k approximation to A, where k <9, by forming the sum

Ak= G'Z"l_iil_};T (46)

then [|[A — Aillo =04+1, where | - ||2 represents the 2-norm. It is a standard
theorem in linear algebra (Kirby 2001) that any matrix B that is not the rank-%
approximation (4.6) has greater error

|A— Ailla < |A — Blls, (4.7)

where B is any 9 x 9 matrix of rank k. Each of the matrices ;0 in equation (4.6)

are rank 1 and should be thought of as the ‘normal modes’ whose weighted linear
combination produces the matrix Ay.

It is useful to normalize the singular values by dividing each by the sum of all
nine, so that the normalized values lie in the range between 0 and 1 and can be

I3We note that there are similarities here to the well-studied Wishart matrices, whose distribution
arises from the sample covariance matrix obtained from a multivariate normal distribution. These
arise frequently in the study of spectral theory of random matrices (Sengupta & Mitra 1999). Also
note that sample covariance matrices are well known to be sensitive to statistical outliers.
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used to determine the distribution of ‘energy’ over all the singular modes. The
normalized values are defined as

9
5'1‘:0'7;/20'2', Of&zfl (48)
i=1

From these, we define the Shannon entropy to be

H=-— Z 6:1n(;), (4.9)

which provides us with a scalar measure of the distribution of ‘energy’ among
the modes, which is typically interpreted as the level of disorder, or randomness,
associated with the matrices as well as a measure of how rapidly the normalized
singular values decay from the peak (i=1). The next two examples give further
insight into the relation between the Shannon entropy of a matrix and its singular
value distribution.

Example 4.1. All orthogonal matrices have the property AT =A=', hence
AAT =1. Therefore, each eigenvalue of the covariance matrix A; =1, which
when normalized gives equal singular values ¢; = %, (i=1,...,9). Therefore, the
Shannon entropy for any 9 x 9 orthogonal matrix is H=—) 6;lng;=In9=
2In3=2.1972 = H,,,«, which is the maximal value that H can achieve for the
9 x 9 case. Normalized singular value distributions that are evenly distributed

among all the available modes correspond to maximum entropy states.

Example 4.2. The 9 x 9 matrix with 1s in every entry has the property that
its covariance matrix has 9s in each entry. Therefore, the covariance matrix
has rank 1 and nullspace dimension 8, which means there are eight normalized
singular values that are zero, and one that is exactly 1. The Shannon entropy
for this case is 0, which is the minimal value that H can achieve. Singular value
distributions that have all the energy clustered into a single mode are minimum
entropy states.

From these two examples, one sees that distributions of singular values that
drop off rapidly from the peak value correspond to lower entropy matrices than
those that are flat. The flattest distribution, where all normalized singular values
are equal in height, corresponds to the matrix with maximum entropy.

It is also useful to define the notion of ‘percentage of compression’ a given
matrix achieves with respect to the maximal entropy matrix. Hence, given a
Sudoku matrix A, define

~ 2In3—-H
H=——7—7"——x100. 4.1
5103 * 100 (4.10)

From the previous examples, orthogonal matrices of example 4.1 have H = 0%
compression, while minimum entropy matrices of example 4.2 have H =100%
compression.
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Example 4.3. The singular value decomposition of the Sudoku matrix shown
in example 2.1 gives rise to matrices U, ¥ and V,

—0.3333 —0.1515 —0.5041 0.4468 0.1031 0.4343 —-0.3210 —0.1106 0.3124
—0.3333 0.2834 —0.2010 —0.4892 0.4398 —0.0053 —0.1160 0.5589  0.0979
—0.3333 0.0258 0.6106 0.2963 —0.0829 0.4490 0.2630 0.3862  0.0286
—0.3333 —0.5261 0.0066 —0.1856 —0.1015 0.0614 —0.3054 0.0449 —0.6843
U=]-0.3333 —0.3819 0.0677 —0.5251 —0.2410 0.0445 0.2604 —0.2846 0.5039 |,
—0.3333 0.2816 —0.4823 0.0924 —0.3406 —0.0698 0.5955 0.0101 —0.3047
—0.3333 0.4400 0.2478 —0.0923 0.3491 0.1334 —-0.0584 —-0.6632 —0.2057
—0.3333 —0.3020 0.0999 0.3728 0.4243 —-0.6516 0.1906  0.0007  0.0880
—0.3333 0.3306 0.1548 0.0839 —0.5503 —0.3959 —0.5088 0.0576  0.1639

45.0000 0 0 0 0 0 0 0 0
0 13.9679 0 0 0 0 0 0 0
0 0 10.6715 0 0 0 0 0
0 0 0 9.3370 0 0 0 0 0
Y= 0 0 0 0 9.0413 0 0 0 0
0 0 0 0 0 5.6280 0 0 0
0 0 0 0 0 0 4.6463 0 0
0 0 0 0 0 0 0 2.9711 0
0 0 0 0 0 0 0 0 0.0000

—0.3333 —0.0802 —0.6393 —0.1292 0.1009 0.2984 0.5638 0.1610 —0.1184
—0.3333 0.4910 —0.0342 0.1143 -0.1193 -0.5735 0.0727  0.0008 —0.5340
—0.3333 0.2366  0.2449 0.3496 —0.5422 0.4283 0.1939 —0.3258 0.1717
—0.3333 —0.3341 —0.1063 0.6025 —0.0547 —0.0325 —0.3432 0.5289  0.0378
and V=]-0.3333 —0.2027 —0.2590 —0.4817 —0.4841 —0.3246 —0.2655 —0.1092 0.3558
—0.3333 0.3386 —0.2049 0.1510 0.5896 —0.0229 —0.2530 —0.3443 0.4227
—0.3333 —0.5105 0.1447 -0.0724 0.1777 0.1517 —0.2035 —0.4884 —0.5172
—0.3333 0.3194 0.3173 —0.4700 0.0959  0.4021 —0.2813 0.4508 —0.1100
—0.3333 —0.2580 0.5368 —0.0641 0.2361 —0.3270 0.5161 0.1263  0.2916

Note that the first term o14%;9; in the partial sum representation (4.6) gives rise
to the rank-1 matrix (minimal Shannon entropy as in example 4.2)

A= (4.11)

Ot Ot Ot Ot Ot Ot Ot Ot O
Ot Ot Ov Ot Ot Ot Ot Ot Ot
v Ot Ot Ot Ot Ot Ot Ot Ot
Ot Ot Ot Ot Ot Ot Ot Ot Ot
Ot Ot Ot Ot Ot Ot Ot Ot Ot
Ot Ot Ot Ot Ot Ot Ot Ot Ot
v Ot Ot Ot Ot Ot Ot Ot Ot
Ot Ot Ot Ot Ot Ot Ot Ot Ot
Ot Ot Ot Ot Ot Ot Ot Ot Ot
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where each entry is the arithmetic average of the allowable digits 1-9 in each
column, row, or 3 x 3 sub-block.? If we normalize the singular values down the
diagonal of X,

—0.4444, 6,=0.1379, 63=0.1054, &,=0.0922, &5=0.0893,
66 =0.0556, &7=0.0459, &5=0.0293, &¢=0.000,

we obtain a value of the Shannon entropy H = 1.7137 and a compression factor
of 22 per cent.

In the next section, we calculate the Shannon entropy and percentage of
compression of an ensemble of Sudoku matrices generated by our algorithm.

(b) Ensemble averages
To generate an ensemble of Sudoku matrices, we run the algorithm described
above N times, denoting each realization of a Sudoku matrix AY). The singular

values for the jth realization are denoted amax_ag 2 > 0(]) > > ogfn:ag >0
~(j)

and their corresponding left and right singular vectors are denoted u;” and
g; ) (i=1,...,9), respectively. We define the ensemble average of the collection
of matrices
X
(A = DAY and (A)e = Jim (A)y (4.13)
j=1
as well as the ensemble averages of the singular components
1
(v =207, (o= lim (o)), (4.14)
j=1
1
(v =52 @ s (i)e= lim (@)y (4.15)
j=1
1L
and @y=— 20, @)= lim @) (4.16)

The standard deviation of each quantity is denoted with double brackets ((-))n
If we first normalize the singular values from each member of the ensemble as in
equation (4.8), i.e
_ ®)
o= (4.17)
D im10;

2In fact, this will always be the case since the constraints imply that 45 is an eigenvalue of A and
AT, with corresponding eigenvectors (1,1,...,1) and (1,1,...,1)T.
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and then perform the ensemble averages, we denote the averaged normalized
values

N
1 .
@i)n =5 ; 67, (61)00 = lim (63)y, (4.18)

with standard deviations ({*))y.

The averaged normalized singular values (4.18) are shown in figure 3 for
N=1,...,10000. Each is seen to converge (the law of large numbers) to a
sample mean value denoted by (G)s. The distribution of the nine values is
shown in figure 4 (data points), along with error bars (black) showing one
standard deviation and the spread of all the data about the mean (grey). The
singular values decrease very nearly linearly. Histograms of each of the averaged
normalized values are shown in figure 5, along with their Gaussian fits. Table 1
shows the nine sample mean values (d;) v, their standard deviations and variances
for N =108.

We denote the Shannon entropy of the jth member of the ensemble to be

9
HO =~ 369 1n6? (4.19)
i=1
with ensemble average
LN
— () — i
(H)x =+ Z;Hf, (H)oo = lim (H)y, (4.20)
j:

and standard deviation ((H))y. A histogram of the averaged Shannon entropy
is shown in figure 6, along with a Gaussian fit to the data. The ensemble-
averaged Shannon entropy has sample mean value (H) s = 1.73312 and standard
deviation 0.000173. The smallest entropy achieved in the sample was 1.512975,
whereas the largest was 1.881064. A convergence plot of the Shannon entropy
is shown in figure 7 for N =1,2,...,10000. If we use this sample mean value in
equation (4.10) to calculate the ensemble-averaged percentage of compression of
a collection of Sudoku matrices, we arrive at

- 2103 — (H)oo _(2In3—1.73312 B
(H) = (T) %100 &~ ( i3 ) %100 = 21%. (4.21)

This value is slightly lower than the corresponding value for a collection of 10°
9 x 9 Latin squares, which has Shannon entropy 1.73544 4+ 0.0001735. On the
other hand, a collection of random matrices has the much lower entropy value of
1.65128 £ 0.0001656, giving a 25 per cent compression factor.

Remark 4.4. When comparing two distributions, the relative entropy or
Kullback—Leibler divergence gives a measure of how likely the first distribution
will resemble the second (Kullback & Leibler 1951). This value is defined as

n

h(a,p):Zai In 2, (4.22)

i=1 ¢
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F I S

singular value

9.8

0 1 2 3 4 5 6 7 8 10

ordering from largest (1) to smallest (9)

Figure 4. Distribution of the normalized singular values of the ensemble of Sudoku matrices
in descending order. The dots denote the sample mean, with error bars showing one standard
deviation about the mean and the spread of all the data with a least squares line (dashed)
to the first eight singular values (the scale of the z-axis is arbitrary). The computed
correlation coefficient is 72 =0.9993. The unfilled circles denote the singular values of a typical
Sudoku matrix selected randomly, while the unfilled squares denote the singular values from
equation (2.2).

where a=(ay,...,a,) and p=(p1,...,p,) are the two distributions being
compared. Note that h(a,p)# h(p,a). It has already been established that
the entropy for Sudoku matrices and Latin squares is similar, so naturally
their relative entropy should be small. Indeed, this is the case, as this value
(if a; corresponds to the Sudoku distributions and p; corresponds to Latin
squares) turns out to be h(a,p)=9.74107032 x 107~ 1075, To put this in
perspective, the relative entropy between Sudoku matrices and random matrices
is 0.004044~5 x 1073, two orders of magnitude higher, and nearly the same
as the relative entropy between Latin squares and random matrices, which
is 0.0042812.

5. Matrix reconstitution

One might ask what the ‘typical’ Sudoku matrix looks like in terms of its
decomposition (4.4). For this, we use the ensemble-averaged singular vectors
(U;) v, (V;) v to construct the matrices (@) y (V] )y along with the averaged singular

values (g;)y. The ‘reconstituted’ matrix is then defined to be

k

(Ap)y = Z(Ui)N(ﬁz)N(ﬁ?)m (5.1)

i=1
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Table 1. Minimum value, maximum value, sample mean and standard deviation for the nine
ensemble-averaged and normalized singular values based on a sample size of N = 108,

~(j)

~(J)

min; G; max; o, (o)) N (i) N
o1 0.41311204510567 0.48811216599382 0.44232319538594 0.00000000195716
a9 0.09417944510957 0.19182448301596 0.13072369442204 0.00000000017089
a3 0.08503464489795 0.15303595644309 0.11196765935169 0.00000000012601
a4 0.06033117834183 0.12811546927484 0.09571062185255 0.00000000009163
a5 0.03574065500616 0.10800399513199 0.07987968644928 0.00000000006386
a6 0.02072019503703 0.09220340904337 0.06259759902184 0.00000000003946
a7 0.00624284569488 0.07760803395316 0.04383380668260 0.00000000001941
ag 0.00060920223256 0.06662384524882 0.02506384156452 0.00000000000974
a9 0 0.04757243788525 0.00789989526931 0.00000000000113

which yields an optimal rank-£ ensemble-averaged Sudoku matrix. The matrices
with N =10® for k=3,6 and 9 are as follows:

4.9975
5.0038
5.0013
5.0014
5.0009
5.0005
4.9986
4.9978
4.9983

4.9996
4.9980
4.9997
4.9997
4.9988
5.0012
5.0018
5.0011
5.0000

5.0014
4.9988
4.9995
4.9994
5.0000
4.9993
5.0000
5.0007
5.0009

4.9963
5.0007
5.0009
5.0010
4.9988
5.0029
5.0018
4.9995
4.9981

5.0011
5.0022
5.0002
5.0002
5.0016
4.9981
4.9975
4.9988
5.0003

5.0010
4.9997
4.9998
4.9997
5.0003
4.9993
4.9996
5.0002
5.0005

5.0009
5.0002
4.9999
4.9998
5.0005
4.9991
4.9992
4.9999
5.0004

5.0012
4.9981
4.9994
4.9993
4.9995
4.9998
5.0008
5.0011
5.0008

5.0009
4.9985
4.9995
4.9995
4.9996
4.9999
5.0006
5.0009
5.0006

Ag=

(5.2)

4.9981
5.0029
5.0016
5.0031
5.0011
5.0001
4.9982
4.9984
4.9966

4.9974
4.9974
5.0001
4.9997
4.9998
5.0009
5.0003
5.0031
5.0012

5.0018
4.9997
5.0004
5.0003
4.9969
4.9985
4.9996
5.0012
5.0015

4.9965
5.0016
5.0006
4.9997
4.9982
5.0033
5.0025
4.9985
4.9991

4.9998
5.0023
5.0003
4.9993
5.0019
4.9982
4.9970
4.9994
5.0018

4.9999
5.0001
4.9990
4.9975
5.0017
5.0001
5.0000
4.9996
5.0021

5.0021
5.0006
4.9995
4.9995
5.0001
4.9994
5.0002
4.9986
4.9999

5.0020
4.9971
4.9986
4.9996
5.0017
5.0003
5.0014
5.0004
4.9989

5.0024
4.9983
4.9999
5.0012
4.9984 | (5.3)
4.9994
5.0008
5.0007
4.9989

4.9982
5.0031
5.0017
5.0027
5.0011
5.0002
4.9980
4.9987
4.9962

4.9975
4.9976
4.9998
4.9997
4.9997
5.0010
5.0002
5.0034
5.0011

5.0020
5.0001
5.0001
5.0000
4.9969
4.9987
4.9995
5.0017
5.0011

4.9964
5.0014
5.0006
5.0000
4.9982
5.0031
5.0027
4.9983
4.9993

4.9995
5.0019
5.0003
5.0000
5.0020
4.9978
4.9974
4.9988
5.0024

5.0001
4.9999
4.9999
4.9970
5.0017
5.0002
4.9998
4.9995
5.0019

5.0022
5.0013
4.9985
4.9994
5.0000
4.9997
4.9999
4.9995
4.9995

5.0019
4.9973
4.9982
4.9998
5.0017
5.0002
5.0015
5.0005
4.9989

5.0022
4.9973
5.0010
5.0015
4.9986
4.9991
5.0010
4.9996
4.9996

and Ag =

(5.4)
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Figure 6. Ensemble-averaged Shannon entropy with N =10000, with sample mean value

1.73221822064708 and standard deviation 0.03996073536463. A histogram is shown along with
the Gaussian distribution.
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Figure 7. The Shannon entropy of the ensemble of N=1,...,10000 Sudoku matrices. The
horizontal line (dashed) shows the approximate converged sample average.

Given the discussion at the end of §3 with respect to the extent to which our
sample is unbiased, the convergence to the rank-1 matrix (4.11) is expected. By
subtracting the matrix (4.11) from Ay, k=3,6,9, the singular value spectrum
should go to zero. We show this in figure 8. Each shows one dominant non-zero
singular value with the eight others close to zero.
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Figure 8. Singular values for the rank-£=3,6,9 matrices of the ensemble average. Each shows
a spectrum similar to the rank-1 matrix of all 5’s. («) Singular values for the rank-3 matrix,
(b) singular values for the rank-6 matrix and (c) singular values for the rank-9 matrix.

6. Summary

The normalized distribution of singular values and corresponding Shannon
entropy for an ensemble of Sudoku matrices provides a quantitative measure of the
level of ‘disorder’ inherent in the collection by characterizing the weighting of the
nine rank-1 ‘modes’ ﬁﬁ)iT used in reconstituting the ‘average’ Sudoku matrix and
allows for comparisons with the related ensembles of Latin squares and random
matrices obtained by dropping the regional constraint 3, and all three constraints,
respectively. Our conclusions based on these comparisons are that the ensemble-
averaged Shannon entropy of the collection of Sudoku matrices is slightly lower
than a collection of Latin squares, but higher than a collection of appropriately
chosen random matrices. Thus, the extra constraints imposed on the Latin squares
and Sudoku matrices serve to increase their Shannon entropy as compared with
what it would be without the constraints imposed (random matrices), forcing a
more even distribution among the singular modes. This is consistent with the fact
that the set of random matrices includes matrices of all possible rank, including
matrices with rank 1. Low-rank matrices have lower Shannon entropy than high-
rank ones, pulling the average of the ensemble down. Why the more constrained
Sudoku matrices have a lower average Shannon entropy than the less constrained
ensemble of Latin squares is not obvious, nor is it clear that the differences in
these averages are statistically significant, or that our methods are sufficiently
sensitive to distinguish between such subtle differences.
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