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1., INTRODUCTION

It has long been recognized, or conjectured, that the notion of
entropy defines a kind of measure on the space of probability distributions
such thaf those of high entropy are in some sense favored over others.
The basis for this was stated first in a variety of intuitive forms:
that distributiops of high entropy represent greater "disorder,” that
they are "smoother," that they are “more probable," that they "assume
less" according to Shannon's interpretation of entropy as an information
measure, etc. While each of these doubtless expresses an element of
truth, none seems explicit enough to lend {tself to a quantitative
demonstration. This alone, however, has not prevented the useful
exploitation of this property of entropy.

In many statistical problems we have {nformation which places some
kind of restriction on a probability distribution without completely
determining it. 1f, given two distributions that agree ecqually well
with the information a{ hand, we prefer the one with greater entropy,
then the distribution with the maximum entropy compatible with our
information will be the most favored of all. Thus conversion of prior
fnformation into a definite prior probability assignment becomes a
variational problem In which the prior information plays the role of

constraint.
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But while this Principle of Haximum Entropy has an established
usefulness In a variety of applications, it has left an unanswered
question in the minds of many. Granted that the distribution of maximum
entrepy has a favored status, in exactly what sense, and how strongly,
are alternative distributions of lower entropy ruled out?

Probably most information theorists have considered it obvious
that, in some sense, the possible distributions are concentrated
strongly near the one of maximum entropy; f.e., that distributions
with appreciably lower entropy than the maximum are atypical of those
allowed by the constraints.

Likewise, Schrodinger (1948) noted that thiS the reason why, in
statistical mechanics, the Darwin-Fowler method and the Boltzmann
"method of the most probable distribution" lead to the same result
in the 1imit N + =, where N {5 a suitable "size" parameter ({.e., in
statistical mechanics the pumber of particles in a system; in communica-
tion theory the number of symbols in a message; in statistical inference
the number of trials of & random experiment), A general proof of this
1imiting form {1.e., a generalized Darwin-Fowler theorem) is given by
van Campenhout and Cover {1979).

But these results, pertaining only to the Timiting distribution,
Jeave us In the same unsatisfactory state as did the eriginal Himit
theorem of Jacob Bernoull! {1713): {as R =+ «, the observable frequency
f=r/N of successes cohverges in probability to p). This said nothing
about how large N must be for a given accuracy. For appiications one
needed the more explicit de Moivre-laplace theorem: {Asymptotically,

fN{p,0) where 02= H"} p(1-p)).



Similarly, in our present problem 1t would be desirable to have a
quantitative demonstration of this entropy concentration phenomenon for
finite N, so that one can see just how the limit is approached. This
is so particularly because there are stil) some who, apparently unaware
or unconvinced of the reality of the phenomenon, reject the Principle
of Maximum Entropy as a methed of inference.

This problem was discussed at the M.I.T. Maximum Entropy Formalism
Conference of May 1978, in connection with some alternative solutions
that had been proposed for maximum entropy problems. The result was a
Tengthy but awkward and unsatisfactory analysis (Jaynes, 1978) in which
real insight into the problem had not yet been achieved. We give here
a simpler, more accurate, and more general treatment of entropy concentra-
tion,

The general Principle of Maxfmum Entropy is applicable to any
problem of inference with a well-defined hypothesis space but incomplete
information, whether or not 1t 1nvolves a repetitive sftuation such as
a random experiment. However, we consider below only the special
applications where we use entropy as a criterion for (1} estimating
frequencies ina random experiment about which incomplete information
1s available; or (2) testing hypotheses about systematic effects in
experiments where frequency data are available.

The second application 1{s jllustrated by analyzing the famous
dice data of R. ¥Wolf. We show how entropy analysis enables one to draw
conclusions about the specific physical imperfections that must have
been present (not knowing whether those dice are still in existence,

so that our conclusions might be checked directly).



2, ENTROPY CONCENTRATION THEOREM

A random experiment has n possible results at each trial; thus in
N trials there are nN conceivable outcomes {we use the word "result" for
a singlé trial, while "outcome" refers to the experiment as a whole; thus
one outcome consists of an enumeration of N results, including their
order). Each ouvtcome ylelds a set of sample numbers {Hil and frequencies

{f;=N,/N, 1<1<n}, with an entropy
n
Hify ... £) = - i};l f; log f; . (1)

Consider the subclass C of all possible outcomes that could be
observed in N trials, compatible with m l1inearly independent constraints

{m<n) of the form
iE% AJ1 fi a Dj » (Lejem) . {2)

The conceptual {nterpretation is that m different “physical quantities”
have been measured, the matrix Aji defines their "nature,” and DJ are
the particular "data” for the case under study. These data tell us
that the actual outcome must have been in class C, but are insufficient
to determine the frequencles {fil‘ We examine the combinatorfal basis
for using--and the consequences of falling to use--the entropy (1) as

a criterion for estimating the [fi}‘

Although it is not needed for this purpose, we note that in a
real application one will wish, 1f possible, to choose the constraint
matrix nji 50 that the resulting quantities D‘j represent systematic
physical influences, real or conjectured, (for example, eccentric

positfon of the center of gravity of a die), which constrain the



frequencies to be different from the uniform distribution of abselute
maximum entropy Ho- log n. In using entropy analysis for hypothesis
testing, the mathematical relations are used in the other direction,
considering the [fi} as known experimentally. A successful hypothesis
about the systematic influences is then one for which the experimentally
observed entropy (1) is sufficiently close to the maximumli“Iax permitted
by the assumad constraints (2), “sufficlently close” being defined by
the following concentration theorem,

A certain fraction F of the outcomes in class C will yield an

entropy in the range

Hooy = BH S HUF Lo ) < (3)

where Hmax may be determined by the following algorithm: define the

partition function

n m
Z{A; vve A ) B ;g% exp(wgg% M Aji] . (4)
Then
m
Hmax = 109 4+ jg] }'j DJ (5}

in which the Lagrange multipliers {Aj] are found from

323-109 7+ Dy = 0, (1<J<m (6)

a set of m simultaneous equations for m unknowns. The frequency distribu-

tion which has this maximum entropy is then

f'1 = 2'1 1:1.Jncp[--§lJ AJ'I) v {(T<ti<n) . (7)



Other distributions {fi] allowed by the constraints (2) wili have
varfous entropies less than Hmax‘ Their concentration near this upper
bound (f.e., the functional relation connecting F and AH} 35 given by

the Concentraticn Theorem:  Asymptotically, 2N4&H 1s distributed over

class C as Chi-squaredwithk=n-m+~ 1 degrees of freadom, independently
of the nature of the constraints. That is, denoting the critical Chi-
squared for k degrees of freedom at the 160 P % significance level by

xi(P). &1 1s given in terms of the upper tall area (1-F) by
_ .2

The proof is relegated to the Appendix, since 1t consists of little more

than repeating mutatis mutandis Karl Pearson's original derivation of

the Chi-squared distribution, taking note of the reduction of dimensionality
due to constraints. MNote that the theorem is combinatorial, expressing

only a counting of the possibilities; 1t does not become a statement of

probabilities unless one assigns equal probability to each outcome in

class C.



3. EXAMPLES: FREQUENCY ESTIMATION

We {1Tustrate the meaning and use of this result by a much-discussed
example. Suppose a die is tossed N= 1000 times and we are told only that
the average number of spots up was not 3.5 as we might expect from a “true"

die, but 4.5, f.e.,

8
L if =45 (9)
i1

which is a special case of (2). Given this information and nothing else,
(i.e., not making use of any additfonal information that you or I might
get from inspection of the die or from past experience with dice {n general),
what estimates should we make of the frequencies {fi} with which the
different faces appeared? This is a kind of caricature of a ¢lass of
real problems that arises constantly in physical applications.

The distribution which has maximum entropy subject to the constraint
(9) 1s given by'(4)-{7) with n=6, m=1, Aji =§, I{A) = (e"1+...+e'6"),
A = =0.37105. The result, derived 1n more detail before {Jaynes, 1978),
is

{f]... f5}= {0.0543, 0,0768, 0.1142, 0.1654, 0.2398, 0.3475) (10}
and it has entropy

Hmax = 1.61358 (11}

as compared to the value 10g86==].?9176. corresponding to no constraint

and a uniform distribution.



Appiying the concentration theorem, we have 6-1-1=4 degrees of
freedom; entering the Chi-squared tables at the conventional 5% significance
level, we find that 95% of all possible outcomes allowed by the constraint
(9) have entropy in the range {3) of width aH= (2N)"' %5(0.05) =0.00474;

or, to sufficient accuracy,

1.609 < K < 1.614 (12)

Thus on the "null hypothesis" which supposes that no further systematic
influence is operative in the experiment other than the one taken into
account {i.e., which assigns equal probability to all outcomes in class
C), there is less than a 5% chance of seeing a frequency distribution
with entropy outside the interval (12).

A remarkable feature {s that the "95% concentration range"

4.74
max N

<H<H

max “3)

is valid asymptotically for any random experiment with four degrees of

freedom, although the value of Hmax may vary widely with other details.
More interesting numerical results are found at more extreme

significance levels. Thus, fn any experiment with 1000 trials and

four degrees of freedom, 99.99% of all outcomes allowed by the constraints

have entropy in a rance of width aH= (2N)™) xgto.oom) =0.012. In the

above example this Is

1.602 < H < 1.614 (14)

and enly in 108 of the possible outcomes has antropy below the range

1.592 < H < 1.614 (15)



Thus, given certain incomplete information, the distribution of maximum
entropy is not only the one that can be realized In the greatest number
of ways; in fact, for large N the overwhelming majority of 21l possible
distributions compatible with our information have entropy very close to
the maximum.

Note that the width of this region of concentration goes down like

N1 and not Jike n1/2

as one might have quessed. Thus, in 20,000 tosses
agreeing with (9}, 95 percent of the possible outcomes have entropy in
the interval (1.61334 <H<1.61358) and only one in 103 has H < 1,61253.
As N + =, any frequency distribution other than the one of maximum entropy
thus becomes highly atypical of those allowed by the constraints,

Even more interesting numbers are readily found. Rowlinson {1970)
rejected the principle of maximum entropy for this problem, and proposed
as an alternative solution*in place of (10) the binomial distribution

fl

5 .
; =(1_T) S L PEPY- (16)

which also satisfies the constraint {9) if p=0.7. But the distribution
{16) has entropy H'= 1.4136=H . - 0.200, far below the Timit (15}, We
now have 2N ﬂH=-400=-x§{I-FJ; or from {A8),

1-F=2.09x10% {17)

This indicates that in 1000 tosses, less than one in 1083 of the outcomes

compatible with the constraint (9} have entropy as low as H'.
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But the concentration theorem is valid only asymptotically, because
of the approximation (Ad) made in {ts derivation; and even for §=1000 we
might distrust 1ts numerical accuracy that far out in the tail of the
distribution. However, we can check the magnjtude of (17) by direct
counting.

The number of ways W in which a specific set of sample numbers
{N] ven NG} can be realized 1s given by the multinomial coefficient {Al).
The asymptotic formula {A3) for the ratio W/W' (which is free from any
errors that-might result from the aforementioned approximation) says
that, for every way in which the binomial distribution {16) can be
realized, there are about exp(NaH) = exp{200), or more than 1036 Ways,
in wﬁich the maximum-entropy distribution {10) can be realized (about
1052 ways for every microsecond in the age of the universe}. While
this result does not take into account the volume element factors
{rk"] dr) of the fuil concentration theorem, it does indicate that
{17} did not mislead us.

Even if we come down to N=50, we find the following. The sample

numbers which agree most closely with {10), (16) while summing to LN, =50

k
are (Nk} = {3,4,6,8,12,17} and {Hils {0,1,7,16,18,8} respectively., With
such small numbers, we no longer need asymptotic formulas; for every
way 1in which the distribution {Hé] can be realized, there are exactly
W/H = (71761181 )/(314161121171) = 38,220 ways in which the maximum-
entropy distribution {Nk} can be reajiized.

Such numbers {llustrate rather clearly just what we are accomplishing
when we maximize entropy. If our data do not fully determine a distribu-

tion {f1} it is prudent to adopt, for purposes of inference, that

distribution which has maximum entropy subject to the data we do have.
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4. HYPOTHESIS TESTING: WOLF'S DICE DATA

The Swiss astronomer Rudolph Wolf {1816-1893; best known today as
the discoverer of the correlation between terrestrial magnetic disturbances
and sunspot activity)} performed a number of random experiments, conducted
with great care, presumably to check the validity of statistical theory.
An account with references is given by Czuber (1908).

In one of these experiments, a red and white die were tossed together
20,000 times in a way that precluded any systematic favoring of any face
over any other. The resulting 36 joint sample numbers are given in Table

1 (taken from Czuber),

Table 1. Wolf's Dice Data

P p——— - —k ropr—y i,

462 507 414 413 503 811 2916
551 562 499 506 658 672 3448
b 563 598 519 487 603 646 3422

E{;"{‘“ 3206 3449 2897 2841 3635 3932 | 20000

S AT R AR SN B SN WAL WA N L W A T

Khite Die Row
] 2 3 4 5 5 Total
1 547 587  S00 462 621 690 | 3407
2 609 655 497 535 651 684 | 3631
Red| 4 514 540 468 438 587 629 | 3176
Die 4
5

N P———

These are the sample numbers {N;, 1 <1<n} of a random experiment with

n= 36 possible results at each trial, On the null hypothesis which assigns
uniform probabilities p-n'] = 1/36, the expectation and standard deviation

of any sample number are KNp=555,55, o+ [Mp{]-p}]'* = 23,24 respectively,
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Czuber, writing in the days when commonly understood statistical inference
cons{sted of 1ittle more than fitting by least squares, compared ¢ with

the gbserved mean-square deviation

[0 s -wp)?] = 76.87 (18)

and concluded only that the null hypothesis must have been wrong; "die
Wirfelseiten nicht als gleichmdgliche Falle sich darsteilen."

Feller, writing 58 years later and extolling, in his Preface to
Vol. 1, the "success of the modern theory" that had evolved in the
interval, did even less with the data. MWoting only that agreement with
prediction of the null hypothesis was atrocious, he castigated Wolf for
having wasted his time on apparatus of such peor gquality.

Neither seems to have seen in such "bad" data on opportunity for
further analysis, that would have been lost had Wolf worked with perfect
dice and produced the kind of data expected of him, To the best of the
writer's knowledge, no statistician has ever attempted to draw any
specific Inferences about the imperfections in Wolf's dice from these
data.

Yet to a physicist, Holf's data stand there, telling us something
very ¢lear and simple about the condition of those dice; information
that can be extracted from the data by a straightforward entropy
analysis that does not require us to go into complicated mechanical
details.

Ludwig Boltzmann, writing thirty years before Czuber and about
six years before Holf's expariment, had glven Lhe principle by which

this analysis may be carried out; and J. Willard Gibbs, writing s1x

years before Czuber, had developed the resulting mathematfcal apparatus



to a high degree of perfection.
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Yet today, 100 years after Boltmann's

work, it st{1]1 seems generally believed that the principles of statistical

mechanics apply only to molecules; and not to dice.

We do not expect, and Wolf's data do not give evidence for,
carrelations between the results of the two dice. Therefore, the
of the data for our purposes is contained in the marginal totals.
observed frequeacies [fi} and their deviations {Ain'f1-1/6} from

null hypothesis pradiction are given {n Table 2.

Table 2. Holf's Marginal Frequencies

Red Die White Die
i fy by fy Ay
1 0.17035 +0, 00368 0.16230 -0.00437
2 0.18155 +0.01488 0.17245 +0.00578
3 0.15880 -0.00787 0.14485 -0.02182
4 0,14580 ~0.02087 0.14205 -0.02464
5 0.17240 +0.00573 0.18175 +0.01508
6 0.17110 +0.00443 0.19960 +0.02993

any

import
The

the

On the null hypothesis that the dice were true, the standard

deviations of (f,} from p = 1/6 should be o= [p{1-p)/i]* = 0.0026. The

observed deviations ai are many times this amount.

how let us judge the deviation by the entrepy criterion, considering

only the white die.
the maximum, log 5, by

log 6 = 1.791 759
Mgy = 14784 990

AH = 0,006 769

The entropy of the observed distribution 11es below
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which looks rather small; but this is for N = 20,000 trials. As a “quick

and dirty" estimate based on (A3) we find exp(NAH) =6 x 1058

, indicating
a very large strong constraint {i.e., systematic influence) keeping the
frequencies away from the uniform distribution that could happen in the
greatest number of ways if the die were equally free to settle in all
positions.

The more precise concentration theorem gives
2 8K = 270.1 = x:(1-F) (19)

and therefore, from {A8),

1-F=1.07x10°% . (20)

Only one in 1056 of the 6" concetvable outcomes has an entropy as low as
Wolf's data give.

In Jaynes {1978) we considered what specific imperfections one might
expect to find in a dle, that might tend to make the frequencies nonuniform.
The two most obvious are {1} a shift of the center of gravity due to the
mass of ivory excavated from the spots, which being proportional to the
number of spots on any side, should make the quantity {fl(i) £1-3.5, 1<i<6}
have a nonzero expectatfon; and (2) errors in trying to machine a perfect
cube, which will tend to make one dimensfon (the last side cut) siightly
different from the other two. It is clear from the data that Wolf's white
die gave a lower frequency for the faces (3,4); and therefore that the
{3-4) dimension was undoubtedly greater than the {1-6) or {2-5) ones.

The effect of this is that the function
+1, 1=1,2,5,6

ACKE (21)
-2, 1= 3,4
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has a non-zerop expectation. The strength of these two systematic influences

is Indicated by Wolf's measured averages for them:

f, = 0.0983, T, =0,1393 {22}

How 1f these are the only two imperfections present, we expect that
the die will be equally free to yield any outcome compatible with the
constraints {22). Therefore the observed frequencies should be the ones
that can be realized in the greatest number of ways while agreeing with
(22); i.e., which has maximum entropy subject to these two constraints.
On the other hand, if the entropy of the observed distribution is
appreciably below the maximum allowed by {22}, that would be evidence
that there 1s still another imperfection present; i.e., a third systematic
influence not yet taken into accqunt,

The maximum entropy Hmax allowed by {22) was calculated in
Jaynes {1978) by'the algorithm (4}-(7), with the result indicated

below:
Hmax = 1,785 225

Hwolf = 1.784 990

AH = 0.000 23%

The discrepancy is reduced by nearly a factor of thirty. The concentration

theorem now gives

2N A = 9,38 = xg{l - F) (23)
or
1-F = 0,025 (24)
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The result appears just barely significant. That {is, 97.5 percent of

all outcomes compatible with (22) have an entropy greater than observed
by Wolf. To assume a further very tiny imperfection [the {2-3-6) corner
chipped off] we could make even this discrepanty disappear; but in view
of the great number of trials one will probably not consider the result

{24) as sufficiently strong evidence for this.

5. CONCLUSION

In Jaynes (1978) we gave a much more lengthy analysis, using
the conventional Chi~squared test but arrivieg at Tess detailed and
less accurate conclusions., At that time, in ignorance of the concentration
theorem, it was not realized that there is no need to carry out the
laborious computation of Chi-squared from the observed deviations A;;
the discrepancy between the observed entropy and that allowed by the
hypothesis {s already a more precise measure of significance.

We now see that the single maximum entropy formalism defined by
(1) - {7) provides not only the procedure for predicting frequencies
when incomplete data are available, that is optimal by a certain well-
defined criterion; but also the criterion for testing hypotheses about

systematic influences when frequency data are at hand.
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APPENDIX

In N trials of the aforementioned random experiment, the 1'th
result occurs H1==H f1 times, 1<1<n. Out of the nN concefvable outcomes,
the number which yleld a particular set of frequencies {fi} 1s

_ NI
LAAIREER PN (1138 powen (301 (A1)

and as N+« we have by the Stirling approximation

N Tog W — TCANUE S (A2)

the entropy function (1), Given two sets of fraquencies (f,) and (f}},

the ratio (number of ways f1 can be realized)/{number of ways f% can be

realized) 1s asymptotically

LA Aen(u-w)[“ T%E*U(N'z)] (A3)
where
A= TT(f/f,)
o
8 = L (fy - F{)/ff] (A4)

represent corrections from the higher terms in the Stirling approximation.
Thelr variation with {f1} 15, of course, completely overwhelmed by that
of the factor exp N{H-H').

The conceivable frequencies {f1 .ee fn} may be regarded as cartesian
coordinates of a point P in an n-dimensional space, restricted to {5: 0:5f1*

2f1= 1}, an (n-1)-dimensional convex set whose vertices are the n points
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(fy=1, 1¢i<n). On S, the entropy (1) varies continuously, taking on
all values 1n (0<H{P}<log n) as P moves from a vertex to the center,

But now we obtain information that imposes the m 1fnearly independent
constraints (2), which define an (n-m)-dimensional hyperplane M. P is
now confined to the intersection $'=M N S, a closed set comprising a
bounded portion of hyperplane of dimensionality k=n-m-1,

On S' the entropy attains a maximum ﬂnax < log n. That this
1s attained at a unique point of S' may be proved analytically, but is
perhaps made obvious as follows, Since any "mixing” increases the
entropy, the set {Sx: PeS, H{P)>x} is strictly convex, Entropy
maximization with constraints linear in {f11 thus amounts to findiny
the value of x”"max for which $' 1s a supporting tangent plane to Sx.

After these preliminaries, our argument follows slavishly the
original derivation by Karl Pearson, as recalled by Lancaster {1969).
In S' we may define new coordinates {x1 . xk] as appropriate linear
functions of (fy ... fn] such that the new origlin i{s at the maximum-
entropy point, and there is a distance r'=(2x112)!5 such that near the

origin a power series expansion ylelds

4
WP) =K -arf+.. ,  a>0 (M)

k-1

We then have a volume element i{n S' proporticnal to r dr. The domain

of all possible frequency distributions {fl vee fn] which satisfy the

constraints and whose entropy 1s {n the range (3) 1s a k-sphere of radius

2

R, given by aR™ = AH.
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In N trials this sphere contains a fraction F of al] possiblie outcomes

in ctass C. From {A2), (A4) this {s given asymptotically by

F o I{R)/1{e) (AS)
vhere
2
1(R) = JR g~har K- g (A6)
0

But, setting HaR2=liaH =(If2}x2, this §s just the cumulative Chi-squared
distribution with k degrees of freedom; In conventional notation the
relation between &H and F is given by Eq. {4)}.

In our applications we are generally concerned with numerical values
for large N AH, bey@nd the range of tables. The Chi-squared distribution
F(N AM) may be expressed analytically as

F(x) = ;%- J#'ts et dt (A7)
0
where s = {k/2)-1. For large x=N aH, this ylelds the asymptotic expansion

1 -F{x} ~ (s.!]'I et . +s{s-1)x’2+ ool {A8)

¥hen s 1s an integer {k even) this terminates and gives the exact result.
Most of the numerical results cited in the text have been cobtalined from

{AB).
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