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The Entropy of Markov lkqjectories 
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Absftact-The idea of thermodynamic depth put forth by Lloyd and 
Pageh requires the computation of the entropy af Markov tqjecto- 
rim Toward this end we consider an irreducible finite state Markov 
chain with transition matrix P and pssoeiated entropy rate H ( X )  = - E,,, p,P,, log P,,, where p is the stationary distribution given by the 
solution of p = p P .  A wectory T,, of the Markov chain is a path 
with initial state I, 6 4  state 3, and no intervening states equal to j. We 
show that the entropy H(T, , )  of the random tqiectory originating and 
termhating in state z is given by H(T, , )  = H ( X ) / p t .  Thus the entropy 
of the random tqiectory T,, is the pmduct of the expected number of 
steps l/p, to return to state i and the entropy rate H ( X )  per step for the 
stationary Markov chain. A general closed form solution for the entropies 
H(T,,) is given by 

H = K - K + H A ,  
where H is the matrix of trajectory entropies H,,  = H(T,,); K = 
(J - P + A ) - l ( H *  - H A ) ;  K is a matrix in which the yth element 
K,, equals the diagonal element K,, of K ;  A is the matrix of stationary 
probabilities with entries A,, = p,; H* is the matrix of single-step 
entropies with entries H:, = H(P' ) = - E k  P:k log Plk;  and HA is a 
diagonal matrix with entries (HA) , ,  = H ( X ) / p * .  

I. INTRODUCTION 

The number of bits of randomness in a trajectory of a Markov 
chain has applications in backgammon, gambling, population growth, 
and evolution. Indeed, Lloyd and Pagels [l], [2] (and to some extent 
Bennett [3]) define notions of logical depth and thermodynamic depth 
which amount to entropy measures of the process (or path) by which a 
state arises. For example, the thermodynamic depth of a cat is large, 
but the thermodynamic depth of a cat and her kitten is net much 
larger. Here the initial state could be a state of primordial ooze and 
the final state the cat and her kitten. We are, therefore, interested in the 
entropy of how the process got to its final state, i.e., the descriptive 
complexity of the path. 

We shall investigate the entropy of trajectories of finite state 
irreducible Markov chains. Consider a finite state irreducible Markov 
chain with transition matrix P and initial state X 1  = i .  The entropy 
rate 

(1) 
H ( X i ,  X 2 ,  * X " )  H ( X ) =  lim 

11-00 n 

is always well defined, since the limit exists, and is given by 

H(X) = -C~aPtJlogpl,, (2) 

p, = C ~ , P ~ , ,  for all j .  (3) 

'.3 

where p is the (unique) solution of the equations 

I 
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Definition: A trajectory t,, from state i to state j of a Markov 
chain is a path with initial state i, final state j ,  and no intervening 
state equal to j .  

I k j  is giYen 
by 

The probability p(tl3) of a trajectory t,, = ~ E ~ Z Q  

p ( t * , )  = PI,,PZ,Z, . . * P Z k , .  (4) 

This is the conditional probability of the trajectory t,, from i to j 
given X I  = i. 

Irreducibility of P implies that 

(5) 

where ?;, is the set of all trajectories from i to j .  Thus, given initial 
state X I  = i, the random trajectory T,, is a finite length sequence 
drawn according to the probability mass function p( t , , ) .  

Definition: The entropy Ha ,  of the trajectory from i to j is defined 
by 

Hl, = H ( T , , )  = - p ( t t , ) l o g p ( t t j ) .  (6) 
t*JE7%J 

Our objective is to determine a closed form expression for Ha,.  

11. RECURRENCE R E M O N  

We develop a recurrence relation for H,, . From this we determine 
H, , ,  the entropy of the path that retums to the initial state. Subse- 
quently, this solution for H,, will be substituted into the recurrence 
to complete the determination of H,,, for all  i ,  j .  

One can solve for A,, by modifying the transition matrix P to 
make j an absorbing state. This yields a Merent recurrence relation 
for j. Instead, for unity and symmetry, we resolve for the matrix 
[H, , ]  directly in terms of P .  

Let P,. denote the ith row of the Markov transition matrix P. Thus 
the entropy of the first step of a trajectory originating in state i is 
given by 

H ( P ,  ) = - Pa, log Pa,. (7) 
3 

The fundamental recurrence then becomes 

BtJ = H(P, . )  + PakBk3, (8) 
k#3 

which follows from the chain rule for entropy. Specifically, the 
entropy of a trajectory is given by the entropy of the first step plus the 
conditional entropy of the remaining trajectory given the first step. 

Alternatively, Theorem 1 can be restated as the matrix recurrence 

H = H *  + PH - PHA, (9) 

where the matrix of trajectory entropies is 

the matrix of first step entropies is 

H ( P 1 . )  H ( P 1 . )  * * *  H ( P 1 . )  
H(P2 . )  H ( P 2 . )  * * *  H ( P 2 . )  

H * = [  : 

H ( P m . )  H ( P m . )  H ( P m . )  

0018-9448/93$03.00 0 1993 IEEE 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 4, JULY 1993 

and the diagonal matrix associated with H is 

1419 

Hi1 0 0 * * *  0 
0 H2z 0 0 

... 0 Hmm 

Theorem 1: For an irreducible Markov chain, the entropy Hi; of 
the random trajectory from state i back to state I is given by 

where p, is the stationary probability for state i and H ( X )  is the 
entropy rate given in (2). 

Proof: The matrix recurrence is 

H = H* + P H  - P H A .  (14)  

Multiplying on the left by the stationary distribution p yields 

p H  = p H *  + p P H  - ~ P H A .  (15) 

Applying p P  = p, it follows that 

p H  = p H *  + p H  -  HA. (16) 

Thus, 

p H *  =  HA. (17) 

But p H *  is a vector with equal components each given by 

is the entropy rate of the Markov chain given in (2). Equation (17) 
may then be written equivalently as 

Ck PkH(Pk . )  = H ( X ) ,  where H ( X )  = - x k , j  pkpkj  1% p k j  

(a(x),  H ( X ) ,  * * 7 H ( X ) )  = ( ~ 1 H 1 1 ,  pzE122, * *  7 PmHmm). 
(18) 

By equating components, it follows that 

0 

The entropy of the trajectory TI, has an interpretation as the product 
of the expected number of steps l/p, to return to state i and the per- 
step entropy rate H ( X )  of the stationary Markov chain. Parsing a 
sequence of states generated by the Markov chain with initial state 
i into trajectories T/:)T!,2) - - - and applying a law of large numbers 
argument makes it obvious that the entropy rate of the {T,(:)}r=l 
process must equal H ( X ) / p t .  A simiiar result for randomly stopped 
sequences is found in [4]. However, the example in Section V can 
be used to show that the entropy H ( T I , )  of a trajectory from state 
i to state j is generally not equal to H ( X ) M , , ,  where M,,  is the 
expected length of the traject- from e' to j .  

III. EXAMPLE 
Consider the irreducible Markov chain depicted in Fig. 1 with 

transition matrix 

1 0 0.9 0 0.1 ) 
0.25 0.25 0.25 0.25 

0 0 1 0  
P =  [ 0.5 0.5 0 0 J *  

Fig. 1. State transition diagram. 

This chain has a unique stationary distribution p = (0.22,0.42,0.23, 
0.13) and an entropy rate of 

A A  

The matrix of first step entropies is 
f 0.46 0.46 0.46 0.46) 

( 0  0 0 o /  
For example, the entropy of the first step leaving state 1 is 
H(0.1,O.g)  = 0.46 bits. By Theorem 1, the matrix H A  is 

/5.32 0 0 0 ) 
(24) 

0 2.80 0 
H A = (  0 0 0 0 5.07 0 9.25 8 J *  

. I  

Thus, for example, the entropy of the random trajectory from state 
4 back to state 4 is 9.25 bits. 

IV. GENERAL SOLUTION 
We now solve the recurrence relation 

H = H * +  P H  - P H A  (25) 

using the previously determined diagonal values 

to derive the following general theorem. 

Theorem2: If P is the transition matrix of an irreducible finite 
state Markov chain, then the matrix H of trajectory entropies is 
given by 

H = K - K +  H A ,  (27) 

where 

K = ( I  - P + A)-'(H* - H A ) ,  (28) 
kt, = K,, for all i ,  j ,  (29) 
Ai,  = p, for all i, j ,  (30) 
HI: = H ( P , . )  for all i ,  j ,  (31) 

Prmfi The proof will be separated into three parts. We first 
derive a solution to the recurrence relation in (25) for aperiodic 
Markov chains, then extend the proof to periodic Markov chains, 
and finally prove the uniqueness of the solution. 
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Rewriting (Z), we have 

A - HA = (H* -HA)+ P(H - H A )  

& = ( H *  - H A )  + P& 

(33) 

or 

(34) 

H = H - H A .  (35) 

where 

Here H is the matrix of off-diagonal terms of the matrix of trajectory 
entropies H. Note that H* is theAknown matrix of first step entropies, 
HA is given by Theorem 1 and H has zeros on the diagonal. The fact 
that H has zeros on the diagonal means that there are more equations 
than unknowns and thus the obvious matrix inverse technique for 
solving this equation will not work. 

However, iteratively substituting for H in the recurrence (34), we 
have 

= P a  + (a* - H A )  
= P2H + (E* - H A )  + P(H* - RA) 

(36) 
(37) 

(38) 

(39) 
= P"& + (1 + P + P2 + * ' .  + p"-l)(H* - EA). 

As I +  P+ P2 +e - .+ P"-l does not converge, we use the relationship 
A(H* - HA) = 0, as proved in (17) of Theorem 1, to write (39) 
in the equivalent form 

& = P"H + ( I  + P - A + P2 - A + - + P"-' - A) 
' (H* - HA). (40) 

Note that 

P" - A = ( P  - A)", (41) 

which can be proved by applying the fact that AP = P A  = A to 
a binomial expansion of ( P  - A)". Substituting (41) into (40), we 
obtain 

n-1 

= p"H + C ( P  - A)'(H* - HA). (42) 
k=O 

To proceed, we first assume P is aperiodic, in which case P" + A. 
Taking the limit in (42) yields 

& = AH + (1 - ( P  - A))-'(R* - HA), 

(I - A)& = (I - ( P  - A))-'(H* - HA). 

(43) 

or equivalently 

(44) 

Note that (I - A) is not invertible. We now denote the right-hand 
side in (44) by 

K = (I - P + A)-l(H* - HA), 

( I  - A)& = K 

(45) 

and solve 

(46) 

entry by entry using the fact that Ht, = 0. 
The ijth component of (46) is 

H i ,  - AirH,, = K8,. 

Recalling A,, = p r ,  we have 

- PrHt-3 = Kzj. (48) 

- C P r H r j  = K33. (49) 

r 

Since H,, = 0, the expression for the j j th component is 

r 

Substituting (49) back into (48) yields 

HE, = Kzj - Kjj .  (50) 

Thus fi is specified completely in terms of the known quantities in 
K. Rewriting (50) in matrix form yields 

H = K - K ,  (51) 

where 

Thus, substituting for 8, 
H - R A = K - k ,  (53) 

establishes a solution to the recurrence equation (25) for aperiodic 
irredicible Markov chains. 

We now remove the assumption of aperiodicity. If P is periodic, 
P" does not converge directly to A, but P" is Cesaro-summable to 
A as in [5, p.1011. We proceed by summing (36) through (39) and 
dividing by n to give 

1 "  

k = l  

+ L c ( l + P + P z  +'"+P""-')(H'-RA). 
k = l  

(54) 

We now use the relationship A(H* - HA) = 0, as proved in (17) 
of Theorem 1, to write (54) in the equivalent form 

1 "  

k=l 

+ 1 k(I+ p - A + pz - A  + . . . + p k - 1  - A )  
k=l  

n 

(a* - HA). (55) 

Again we apply P" - A = ( P  - A)" from (41), to obtain 

Since P" is Cesaro-summable to A, we have 
n 

L C P k + A .  
k = l  

(57) 

The inverse of I - P + A exists [5, p.1011 and is given by 
n k - 1  

,n k=l k 0  

- C C ( P - A ) ' + ( I - P + A ) - ' .  (58) 

Taking the limit as n + 00, we have 
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which is precisely the expression in (44). From here the proof 
continues as for aperiodic chains. Thus, the solution to the recurrence 
relation (25) is established for irreducible periodic and aperiodic 
Markov chains. 

We now finish the proof by proving the uniqueness of the solution 
H given in (27). Let H and H’ be two solutions to the recurrence 
equation (25). Then, 

H = H * + P H  - P H A  
H’ = H* + P H ’  - P H A .  

By subtracting (61) from (60), we obtain 

H - H’ = P ( H  - H ’ )  - P ( H A  - H A ) .  

But from Theorem 1, it follows that H A  = HA,  yielding 

H - H’ = P ( H  - H‘) - P ( H A  - H A )  
= P ( H  - H ’ ) .  

By iteration, we obtain 

H - H‘ = P ( H  - H ‘ )  
= P 2 ( H  - HI) 

= P ” ( H  - H‘) .  

Summing (65) through (68)’and dividing by n yields 

1 ”  H - H‘ = - 
n 

Using the fact that P” is Cesaro-summable to A ,  we obtain 

P‘(H - H’).  
I=1 

H - H’ = A ( H  - H ‘ ) ,  

Now since each row of A is the vector of stationary probabilities p, 
the columns of ( H  - H ’ )  must have elements which are equal, and 
since the diagonal is zero, all elements of the columns of H - H’ 
must be equal to zero and thus ( H  - H ’ )  must be zero. Thus H = E’ 

0 and the solution to (25) is unique. 

V. CONCLUSION 
We can now calculate the matrix of trajectory entropies for the 

example in Section 111. The irreducible Markov chain is depicted in 
Fig. 1 has transition matrix 

1 0 0.9 0 0.1 1 
0.25 0.25 0.25 0.25 

0 0 1 0  
P =  [ 0.5 0.5 0 0 J 

From Section 111, the matrix’ H A  is given by 

5.32 0 0 

The matrices K = ( I - P + A ) - ’ ( H *  - H A )  and k are respectively 
given by 

-3.3564 -0.0001 1.4995 0.5917 
1.6436 -0.5990 1.4337 0.9665 
0.1436 0.7004 -2.5991 1.7791 ’ 
0.1436 0.7004 -2.5991 -7.4713 

) (73) K =  ( 

and 

-3.3564 -0.5990 -2.5991 -7.4713 
= -3.3564 -0.5990 -2.5991 -7.4713 

-3.3564 -0.5990 -23991 -7.4713 ‘ 

-3.3564 -0.5990 -2.5991 -7.4713 
) (74) 

Consequently, from Theorem 2, the matrix of trajectory entropies is 

5.32 0.60 4.10 8.06 
5.00 2.80 4.03 8.44 

3.50 1.30 0 9.25 
(75) 

For example, the entropy of the trajectory from state 4 to state 2 is 
1.30 bits. Note that the entropy of trajectory T43 is 0 bits, reflecting 
the (conditional) determinism of that path. Notice also that any path 
originating in state 4 goes directly to state 3 and thus has the same 
probability as a path which originates in state 3. Therefore, the 
entropy of a trajectory starting in state 4 and going to state 1 is 
the same as that of a trajectory starting in state 3 and going to state 
1. Thus, 1131 = 1141, which is verified by inspection of the matrix 
H of trajectory entropies. 

In summary, H expresses the descriptive complexity of the tra- 
jectories. 
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