Chapter 14
 Distances in Probability Theory

A probability space is a measurable space (Ω, \mathcal{A}, P), where \mathcal{A} is the set of all measurable subsets of Ω, and P is a measure on \mathcal{A} with $P(\Omega)=1$. The set Ω is called a sample space. An element $a \in \mathcal{A}$ is called an event. In particular, an elementary event is a subset of Ω that contains only one element. $P(a)$ is called the probability of the event a. The measure P on \mathcal{A} is called a probability measure, or (probability) distribution law, or simply (probability) distribution.

A random variable X is a measurable function from a probability space (Ω, \mathcal{A}, P) into a measurable space, called a state space of possible values of the variable; it is usually taken to be the real numbers with the Borel σ-algebra, so $X: \Omega \rightarrow \mathbb{R}$. The range \mathcal{X} of the random variable X is called the support of the distribution P; an element $x \in \mathcal{X}$ is called a state.

A distribution law can be uniquely described via a cumulative distribution function (CDF, distribution function, cumulative density function) $F(x)$ which describes the probability that a random value X takes on a value at most $x: F(x)=P(X \leq x)=P(\omega \in \Omega: X(\omega) \leq x)$.

So, any random variable X gives rise to a probability distribution which assigns to the interval $[a, b]$ the probability $P(a \leq X \leq b)=P(\omega \in \Omega: a \leq$ $X(\omega) \leq b$), i.e., the probability that the variable X will take a value in the interval $[a, b]$.

A distribution is called discrete if $F(x)$ consists of a sequence of finite jumps at x_{i}; a distribution is called continuous if $F(x)$ is continuous. We consider (as in the majority of applications) only discrete or absolutely continuous distributions, i.e., the CDF function $F: \mathbb{R} \rightarrow \mathbb{R}$ is absolutely continuous. It means that, for every number $\epsilon>0$, there is a number $\delta>0$ such that, for any sequence of pairwise disjoint intervals $\left[x_{k}, y_{k}\right], 1 \leq k \leq n$, the inequality $\sum_{1<k \leq n}$ $\left(y_{k}-x_{k}\right)<\delta$ implies the inequality $\sum_{1 \leq k \leq n}\left|F\left(y_{k}\right)-F\left(x_{k}\right)\right|<\epsilon$.

A distribution law also can be uniquely defined via a probability density function (PDF, density function, probability function) $p(x)$ of the underlying random variable. For an absolutely continuous distribution, the CDF is almost everywhere differentiable, and the PDF is defined as the derivative $p(x)=F^{\prime}(x)$ of the CDF; so, $F(x)=P(X \leq x)=\int_{-\infty}^{x} p(t) d t$, and
$\int_{a}^{b} p(t) d t=P(a \leq X \leq b)$. In the discrete case, the PDF (the density of the random variable X) is defined by its values $p\left(x_{i}\right)=P(X=x)$; so $F(x)=\sum_{x_{i} \leq x} p\left(x_{i}\right)$. In contrast, each elementary event has probability zero in any continuous case.

The random variable X is used to "push-forward" the measure P on Ω to a measure $d F$ on \mathbb{R}. The underlying probability space is a technical device used to guarantee the existence of random variables and sometimes to construct them.

For simplicity, we usually present the discrete version of probability metrics, but many of them are defined on any measurable space; see [Bass89], [Cha08]. For a probability distance d on random quantities, the conditions $P(X=Y)=1$ or equality of distributions imply (and characterize) $d(X, Y)=0$; such distances are called [Rach91] compound or simple distances, respectively. In many cases, some ground distance d is given on the state space \mathcal{X} and the presented distance is a lifting of it to a distance on distributions.

In Statistics, many of the distances below, between distributions P_{1} and P_{2}, are used as measures of goodness of fit between estimated, P_{2}, and theoretical, P_{1}, distributions. Also, in Statistics, a distance that not satisfy the triangle inequality, is often called a distance statistic; a statistic is a function of a sample which is independent of its distribution.

Below we use the notation $\mathbb{E}[X]$ for the expected value (or mean) of the random variable X : in the discrete case $\mathbb{E}[X]=\sum_{x} x p(x)$, in the continuous case $\mathbb{E}[X]=\int x p(x) d x$. The variance of X is $\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$. Also we denote $p_{X}=p(x)=P(X=x), F_{X}=F(x)=P(X \leq x), p(x, y)=P(X=x$, $Y=y)$.

14.1 Distances on random variables

All distances in this section are defined on the set \mathbf{Z} of all random variables with the same support \mathcal{X}; here $X, Y \in \mathbf{Z}$.

- p-average compound metric

Given $p \geq 1$, the p-average compound metric (or L_{p}-metric between variables) is a metric on \mathbf{Z} with $\mathcal{X} \subset \mathbb{R}$ and $\mathbb{E}\left[|Z|^{p}\right]<\infty$ for all $Z \in \mathbf{Z}$, defined by

$$
\left(\mathbb{E}\left[|X-Y|^{p}\right]\right)^{1 / p}=\left(\sum_{(x, y) \in \mathcal{X} \times \mathcal{X}}|x-y|^{p} p(x, y)\right)^{1 / p} .
$$

For $p=2$ and ∞, it is called, respectively, the mean-square distance and essential supremum distance between variables.

- Absolute moment metric

Given $p \geq 1$, the absolute moment metric is a metric on \mathbf{Z} with $\mathcal{X} \subset \mathbb{R}$ and $\mathbb{E}\left[|Z|^{p}\right]<\infty$ for all $Z \in \mathbf{Z}$, defined by

$$
\left(\left|\left(\mathbb{E}\left[|X|^{p}\right]\right)^{1 / p}-\left(\mathbb{E}\left[|Y|^{p}\right]\right)^{1 / p}\right|\right.
$$

For $p=1$ it is called the engineer metric.

- Indicator metric

The indicator metric is a metric on \mathbf{Z}, defined by

$$
\mathbb{E}\left[1_{X \neq Y}\right]=\sum_{(x, y) \in \mathcal{X} \times \mathcal{X}} 1_{x \neq y} p(x, y)=\sum_{(x, y) \in \mathcal{X} \times \mathcal{X}, x \neq y} p(x, y) .
$$

(Cf. Hamming metric in Chap. 1.)

- Ky Fan metric K

The Ky Fan metric K is a metric K on \mathbf{Z}, defined by

$$
\inf \{\epsilon>0: P(|X-Y|>\epsilon)<\epsilon\}
$$

It is the case $d(x, y)=|X-Y|$ of the probability distance.

- Ky Fan metric K^{*}

The Ky Fan metric K^{*} is a metric K^{*} on \mathbf{Z}, defined by

$$
\mathbb{E}\left[\frac{|X-Y|}{1+|X-Y|}\right]=\sum_{(x, y) \in \mathcal{X} \times \mathcal{X}} \frac{|x-y|}{1+|x-y|} p(x, y)
$$

- Probability distance

Given a metric space (\mathcal{X}, d), the probability distance on \mathbf{Z} is defined by

$$
\inf \{\epsilon>0: P(d(X, Y)>\epsilon)<\epsilon\} .
$$

14.2 Distances on distribution laws

All distances in this section are defined on the set \mathcal{P} of all distribution laws such that corresponding random variables have the same range \mathcal{X}; here $P_{1}, P_{2} \in \mathcal{P}$.

- L_{p}-metric between densities

The L_{p}-metric between densities is a metric on \mathcal{P} (for a countable \mathcal{X}), defined, for any $p \geq 1$, by

$$
\left(\sum_{x}\left|p_{1}(x)-p_{2}(x)\right|^{p}\right)^{\frac{1}{p}}
$$

For $p=1$, one half of it is called the total variation metric (or variational distance, trace-distance). For $p=2$, it is the Patrick-Fisher distance. The point metric $\sup _{x}\left|p_{1}(x)-p_{2}(x)\right|$ corresponds to $p=\infty$.

The Lissak-Fu distance with parameter $\alpha>0$ is defined as $\sum_{x} \mid p_{1}(x)-$ $\left.p_{2}(x)\right|^{\alpha}$.

- Bayesian distance

The error probability in classification is the following error probability of the optimal Bayes rule for the classification into 2 classes with a priori probabilities $\phi, 1-\phi$ and corresponding densities p_{1}, p_{2} of the observations:

$$
P_{e}=\sum_{x} \min \left(\phi p_{1}(x),(1-\phi) p_{2}(x)\right)
$$

The Bayesian distance on \mathcal{P} is defined by $1-P_{e}$.
For the classification into m classes with a priori probabilities $\phi_{i}, 1 \leq i \leq$ m, and corresponding densities p_{i} of the observations, the error probability becomes

$$
P_{e}=1-\sum_{x} p(x) \max _{i} P\left(C_{i} \mid x\right)
$$

where $P\left(C_{i} \mid x\right)$ is the a posteriori probability of the class C_{i} given the observation x and $p(x)=\sum_{i=1}^{m} \phi_{i} P\left(x \mid C_{i}\right)$. The general mean distance between m classes C_{i} (cf. m-hemi-metric in Chap. 3) is defined (Van der Lubbe 1979), for $\alpha>0$ and $\beta>1$, by

$$
\sum_{x} p(x)\left(\sum_{i} P\left(C_{i} \mid x\right)^{\beta}\right)^{\alpha}
$$

The case $\alpha=1, \beta=2$ corresponds to the Bayesian distance in Devijver (1974); the case $\beta=\frac{1}{\alpha}$ was considered in Trouborst, Baker, Boekee and Boxma (1974).

- Mahalanobis semi-metric

The Mahalanobis semi-metric (or quadratic distance) is a semi-metric on $\mathcal{P}\left(\right.$ for $\left.\mathcal{X} \subset \mathbb{R}^{n}\right)$, defined by

$$
\sqrt{\left(\mathbb{E}_{P_{1}}[X]-\mathbb{E}_{P_{2}}[X]\right)^{T} A^{-1}\left(\mathbb{E}_{P_{1}}[X]-\mathbb{E}_{P_{2}}[X]\right)}
$$

for a given positive-definite matrix A.

- Engineer semi-metric

The engineer semi-metric is a semi-metric on \mathcal{P} (for $\mathcal{X} \subset \mathbb{R}$), defined by

$$
\left|\mathbb{E}_{P_{1}}[X]-\mathbb{E}_{P_{2}}[X]\right|=\left|\sum_{x} x\left(p_{1}(x)-p_{2}(x)\right)\right|
$$

- Stop-loss metric of order m

The stop-loss metric of order m is a metric on $\mathcal{P}($ for $\mathcal{X} \subset \mathbb{R})$, defined by

$$
\sup _{t \in \mathbb{R}} \sum_{x \geq t} \frac{(x-t)^{m}}{m!}\left(p_{1}(x)-p_{2}(x)\right) .
$$

- Kolmogorov-Smirnov metric

The Kolmogorov-Smirnov metric (or Kolmogorov metric, uniform metric) is a metric on \mathcal{P} (for $\mathcal{X} \subset \mathbb{R}$), defined by

$$
\sup _{x \in \mathbb{R}}\left|P_{1}(X \leq x)-P_{2}(X \leq x)\right|
$$

The Kuiper distance on \mathcal{P} is defined by

$$
\sup _{x \in \mathbb{R}}\left(P_{1}(X \leq x)-P_{2}(X \leq x)\right)+\sup _{x \in \mathbb{R}}\left(P_{2}(X \leq x)-P_{1}(X \leq x)\right) .
$$

(Cf. Pompeiu-Eggleston metric in Chap. 9.)
The Anderson-Darling distance on \mathcal{P} is defined by

$$
\sup _{x \in \mathbb{R}} \frac{\mid\left(P_{1}(X \leq x)-P_{2}(X \leq x) \mid\right.}{\ln \sqrt{\left(P_{1}(X \leq x)\left(1-P_{1}(X \leq x)\right)\right.}} .
$$

The Crnkovic-Drachma distance is defined by

$$
\begin{aligned}
& \sup _{x \in \mathbb{R}}\left(P_{1}(X \leq x)-P_{2}(X \leq x)\right) \ln \frac{1}{\sqrt{\left(P_{1}(X \leq x)\left(1-P_{1}(X \leq x)\right)\right.}}+ \\
& +\sup _{x \in \mathbb{R}}\left(P_{2}(X \leq x)-P_{1}(X \leq x)\right) \ln \frac{1}{\sqrt{\left(P_{1}(X \leq x)\left(1-P_{1}(X \leq x)\right)\right.}}
\end{aligned}
$$

The above three distances are used in Statistics as measures of goodness of fit, especially, for VaR (Value at Risk) measurements in Finance.

- Cramer-von Mises distance

The Cramer-von Mises distance is a distance on $\mathcal{P}($ for $\mathcal{X} \subset \mathbb{R})$, defined by

$$
\int_{-\infty}^{+\infty}\left(P_{1}(X \leq x)-P_{2}(X \leq x)\right)^{2} d x
$$

This is the squared L_{2}-metric between cumulative density functions.

- Levy-Sibley metric

The Levy metric is a metric on \mathcal{P} (for $\mathcal{X} \subset \mathbb{R}$ only), defined by
$\inf \left\{\epsilon>0: P_{1}(X \leq x-\epsilon)-\epsilon \leq P_{2}(X \leq x) \leq P_{1}(X \leq x+\epsilon)+\epsilon\right.$ for any $\left.x \in \mathbb{R}\right\}$.
It is a special case of the Prokhorov metric for $(\mathcal{X}, d)=(\mathbb{R},|x-y|)$.

- Prokhorov metric

Given a metric space (\mathcal{X}, d), the Prokhorov metric on \mathcal{P} is defined by

$$
\inf \left\{\epsilon>0: P_{1}(X \in B) \leq P_{2}\left(X \in B^{\epsilon}\right)+\epsilon \text { and } P_{2}(X \in B) \leq P_{1}\left(X \in B^{\epsilon}\right)+\epsilon\right\}
$$

where B is any Borel subset of \mathcal{X}, and $B^{\epsilon}=\{x: d(x, y)<\epsilon, y \in B\}$.
It is the smallest (over all joint distributions of pairs (X, Y) of random variables X, Y such that the marginal distributions of X and Y are P_{1} and P_{2}, respectively) probability distance between random variables X and Y.

- Dudley metric

Given a metric space (\mathcal{X}, d), the Dudley metric on \mathcal{P} is defined by

$$
\sup _{f \in F}\left|\mathbb{E}_{P_{1}}[f(X)]-\mathbb{E}_{P_{2}}[f(X)]\right|=\sup _{f \in F}\left|\sum_{x \in \mathcal{X}} f(x)\left(p_{1}(x)-p_{2}(x)\right)\right|
$$

where $F=\left\{f: \mathcal{X} \rightarrow \mathbb{R},\|f\|_{\infty}+\operatorname{Lip}_{d}(f) \leq 1\right\}$, and $\operatorname{Lip}_{d}(f)=$ $\sup _{x, y \in \mathcal{X}, x \neq y} \frac{|f(x)-f(y)|}{d(x, y)}$.

- Szulga metric

Given a metric space (\mathcal{X}, d), the Szulga metric on \mathcal{P} is defined by

$$
\sup _{f \in F}\left|\left(\sum_{x \in \mathcal{X}}|f(x)|^{p} p_{1}(x)\right)^{1 / p}-\left(\sum_{x \in \mathcal{X}}|f(x)|^{p} p_{2}(x)\right)^{1 / p}\right|,
$$

where $F=\left\{f: X \rightarrow \mathbb{R}, \operatorname{Lip}_{d}(f) \leq 1\right\}$, and $\operatorname{Lip}_{d}(f)=\sup _{x, y \in \mathcal{X}, x \neq y}$ $\frac{|f(x)-f(y)|}{d(x, y)}$.

- Zolotarev semi-metric

The Zolotarev semi-metric is a semi-metric on \mathcal{P}, defined by

$$
\sup _{f \in F}\left|\sum_{x \in \mathcal{X}} f(x)\left(p_{1}(x)-p_{2}(x)\right)\right|
$$

where F is any set of functions $f: \mathcal{X} \rightarrow \mathbb{R}$ (in the continuous case, F is any set of such bounded continuous functions); cf. Szulga metric, Dudley metric.

- Convolution metric

Let G be a separable locally compact abelian group, and let $C(G)$ be the set of all real bounded continuous functions on G vanishing at infinity. Fix a function $g \in C(G)$ such that $|g|$ is integrable with respect to the Haar measure on G, and $\left\{\beta \in G^{*}: \widehat{g}(\beta)=0\right\}$ has empty interior; here G^{*} is the dual group of G, and \widehat{g} is the Fourier transform of g.

The convolution metric (or smoothing metric) is defined (Yukich 1985), for any two finite signed Baire measures P_{1} and P_{2} on G, by

$$
\sup _{x \in G}\left|\int_{y \in G} g\left(x y^{-1}\right)\left(d P_{1}-d P_{2}\right)(y)\right| .
$$

This metric can also be seen as the difference $T_{P_{1}}(g)-T_{P_{2}}(g)$ of convolution operators on $C(G)$ where, for any $f \in C(G)$, the operator $T_{P} f(x)$ is $\int_{y \in G} f\left(x y^{-1}\right) d P(y)$.

- Discrepancy metric

Given a metric space (\mathcal{X}, d), the discrepancy metric on \mathcal{P} is defined by

$$
\sup \left\{\left|P_{1}(X \in B)-P_{2}(X \in B)\right|: B \text { is any closed ball }\right\} .
$$

- Bi-discrepancy semi-metric

The bi-discrepancy semi-metric is a semi-metric evaluating the proximity of distributions P_{1}, P_{2} (over different collections $\mathcal{A}_{1}, \mathcal{A}_{2}$ of measurable sets), defined in the following way:

$$
D\left(P_{1}, P_{2}\right)+D\left(P_{2}, P_{1}\right)
$$

where $D\left(P_{1}, P_{2}\right)=\sup \left\{\inf \left\{P_{2}(C): B \subset C \in \mathcal{A}_{2}\right\}-P_{1}(B): B \in \mathcal{A}_{1}\right\}$ (discrepancy).

- Le Cam distance

The Le Cam distance is a semi-metric, evaluating the proximity of probability distributions P_{1}, P_{2} (on different spaces $\mathcal{X}_{1}, \mathcal{X}_{2}$), defined in the following way:

$$
\max \left\{\delta\left(P_{1}, P_{2}\right), \delta\left(P_{2}, P_{1}\right)\right\}
$$

where $\delta\left(P_{1}, P_{2}\right)=\inf _{B} \sum_{x_{2} \in \mathcal{X}_{2}}\left|B P_{1}\left(X_{2}=x_{2}\right)-B P_{2}\left(X_{2}=x_{2}\right)\right|$ is the $L e$ Cam deficiency. Here $B P_{1}\left(X_{2}=x_{2}\right)=\sum_{x_{1} \in \mathcal{X}_{1}} p_{1}\left(x_{1}\right) b\left(x_{2} \mid x_{1}\right)$, where B is a probability distribution over $\mathcal{X}_{1} \times \mathcal{X}_{2}$, and

$$
b\left(x_{2} \mid x_{1}\right)=\frac{B\left(X_{1}=x_{1}, X_{2}=x_{2}\right)}{B\left(X_{1}=x_{1}\right)}=\frac{B\left(X_{1}=x_{1}, X_{2}=x_{2}\right)}{\sum_{x \in \mathcal{X}_{2}} B\left(X_{1}=x_{1}, X_{2}=x\right)} .
$$

So, $B P_{2}\left(X_{2}=x_{2}\right)$ is a probability distribution over \mathcal{X}_{2}, since $\sum_{x_{2} \in \mathcal{X}_{2}}$ $b\left(x_{2} \mid x_{1}\right)=1$.

Le Cam distance is not a probabilistic distance, since P_{1} and P_{2} are defined over different spaces; it is a distance between statistical experiments (models).

- Skorokhod-Billingsley metric

The Skorokhod-Billingsley metric is a metric on \mathcal{P}, defined by

$$
\inf _{f} \max \left\{\sup _{x}\left|P_{1}(X \leq x)-P_{2}(X \leq f(x))\right|, \sup _{x}|f(x)-x|, \sup _{x \neq y}\left|\ln \frac{f(y)-f(x)}{y-x}\right|\right\},
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is any strictly increasing continuous function.

- Skorokhod metric

The Skorokhod metric is a metric on \mathcal{P}, defined by

$$
\inf \left\{\epsilon>0: \max \left\{\sup _{x}\left|P_{1}(X<x)-P_{2}(X \leq f(x))\right|, \sup _{x}|f(x)-x|\right\}<\epsilon\right\},
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing continuous function.

- Birnbaum-Orlicz distance

The Birnbaum-Orlicz distance is a distance on \mathcal{P}, defined by

$$
\sup _{x \in \mathbb{R}} f\left(\left|P_{1}(X \leq x)-P_{2}(X \leq x)\right|\right)
$$

where $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is any non-decreasing continuous function with $f(0)=0$, and $f(2 t) \leq C f(t)$ for any $t>0$ and some fixed $C \geq 1$. It is a near-metric, since the C-triangle inequality $d\left(P_{1}, P_{2}\right) \leq C\left(d\left(P_{1}, P_{3}\right)+\right.$ $\left.d\left(P_{3}, P_{2}\right)\right)$ holds.

Birnbaum-Orlicz distance is also used, in Functional Analysis, on the set of all integrable functions on the segment $[0,1]$, where it is defined by $\int_{0}^{1} H(|f(x)-g(x)|) d x$, where H is a non-decreasing continuous function from $[0, \infty)$ onto $[0, \infty)$ which vanishes at the origin and satisfies the Orlicz condition: $\sup _{t>0} \frac{H(2 t)}{H(t)}<\infty$.

- Kruglov distance

The Kruglov distance is a distance on \mathcal{P}, defined by

$$
\int f\left(P_{1}(X \leq x)-P_{2}(X \leq x)\right) d x
$$

where $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is any even strictly increasing function with $f(0)=0$, and $f(s+t) \leq C(f(s)+f(t))$ for any $s, t \geq 0$ and some fixed $C \geq 1$. It is a near-metric, since the C-triangle inequality $d\left(P_{1}, P_{2}\right) \leq C\left(d\left(P_{1}, P_{3}\right)+d\left(P_{3}, P_{2}\right)\right)$ holds.

- Burbea-Rao distance

Consider a continuous convex function $\phi(t):(0, \infty) \rightarrow \mathbb{R}$ and put $\phi(0)=$ $\lim _{t \rightarrow 0} \phi(t) \in(-\infty, \infty]$. The convexity of ϕ implies non-negativity of the function $\delta_{\phi}:[0,1]^{2} \rightarrow(-\infty, \infty]$, defined by $\delta_{\phi}(x, y)=\frac{\phi(x)+\phi(y)}{2}-\phi\left(\frac{x+y}{2}\right)$ if $(x, y) \neq(0,0)$, and $\delta_{\phi}(0,0)=0$.

The corresponding Burbea-Rao distance on \mathcal{P} is defined by

$$
\sum_{x} \delta_{\phi}\left(p_{1}(x), p_{2}(x)\right)
$$

- Bregman distance

Consider a differentiable convex function $\phi(t):(0, \infty) \rightarrow \mathbb{R}$, and put $\phi(0)=\lim _{t \rightarrow 0} \phi(t) \in(-\infty, \infty]$. The convexity of ϕ implies that the
function $\delta_{\phi}:[0,1]^{2} \rightarrow(-\infty, \infty]$ defined by continuous extension of $\delta_{\phi}(u, v)=\phi(u)-\phi(v)-\phi^{\prime}(v)(u-v), 0<u, v \leq 1$, on $[0,1]^{2}$ is nonnegative.

The corresponding Bregman distance on \mathcal{P} is defined by

$$
\sum_{1}^{m} \delta_{\phi}\left(p_{i}, q_{i}\right)
$$

(Cf. Bregman quasi-distance.)

- f-divergence of Csizar

The f-divergence of Csizar is a function on $\mathcal{P} \times \mathcal{P}$, defined by

$$
\sum_{x} p_{2}(x) f\left(\frac{p_{1}(x)}{p_{2}(x)}\right)
$$

where f is a continuous convex function $f: \mathbb{R} \geq 0 \rightarrow \mathbb{R}$.
The cases $f(t)=t \ln t$ and $f(t)=(t-1)^{2} / 2$ correspond to the Kullback-Leibler distance and to the χ^{2}-distance below, respectively. The case $f(t)=|t-1|$ corresponds to the L_{1}-metric between densities, and the case $f(t)=4(1-\sqrt{t})$ (as well as $f(t)=2(t+1)-4 \sqrt{t}$) corresponds to the squared Hellinger metric.

Semi-metrics can also be obtained, as the square root of the f-divergence of Csizar, in the cases $f(t)=(t-1)^{2} /(t+1)$ (the Vajda-Kus semimetric), $f(t)=\left|t^{a}-1\right|^{1 / a}$ with $0<a \leq 1$ (the generalized Matusita distance), and $f(t)=\frac{\left(t^{a}+1\right)^{1 / a}-2^{(1-a) / a}(t+1)}{1-1 / \alpha}$ (the Osterreicher semimetric).

- Fidelity similarity

The fidelity similarity (or Bhattacharya coefficient, Hellinger affinity) on \mathcal{P} is

$$
\rho\left(P_{1}, P_{2}\right)=\sum_{x} \sqrt{p_{1}(x) p_{2}(x)}
$$

- Hellinger metric

In terms of the fidelity similarity ρ, the Hellinger metric (or HellingerKakutani metric) on \mathcal{P} is defined by

$$
\left(2 \sum_{x}\left(\sqrt{p_{1}(x)}-\sqrt{p_{2}(x)}\right)^{2}\right)^{\frac{1}{2}}=2\left(1-\rho\left(P_{1}, P_{2}\right)\right)^{\frac{1}{2}}
$$

Sometimes, $\left(\sum_{x}\left(\sqrt{p_{1}(x)}-\sqrt{p_{2}(x)}\right)^{2}\right)^{\frac{1}{2}}$ is called the Matusita distance, while $\left(\sum_{x}\left(\sqrt{p_{1}(x)}-\sqrt{p_{2}(x)}\right)^{2}\right.$ is called the squared-chord distance.

- Harmonic mean similarity

The harmonic mean similarity is a similarity on \mathcal{P}, defined by

$$
2 \sum_{x} \frac{p_{1}(x) p_{2}(x)}{p_{1}(x)+p_{2}(x)}
$$

- Bhattacharya distance 1

In terms of the fidelity similarity ρ, the Bhattacharya distance 1 on \mathcal{P} is

$$
\left(\arccos \rho\left(P_{1}, P_{2}\right)\right)^{2}
$$

Twice this distance is used also in Statistics and Machine Learning, where it is called the Fisher distance.

- Bhattacharya distance 2

In terms of the fidelity similarity ρ, the Bhattacharya distance 2 on \mathcal{P} is

$$
-\ln \rho\left(P_{1}, P_{2}\right)
$$

- χ^{2}-distance

The χ^{2}-distance (or Pearson χ^{2}-distance) is a quasi-distance on \mathcal{P}, defined by

$$
\sum_{x} \frac{\left(p_{1}(x)-p_{2}(x)\right)^{2}}{p_{2}(x)}
$$

The Neyman χ^{2}-distance is a quasi-distance on \mathcal{P}, defined by

$$
\sum_{x} \frac{\left(p_{1}(x)-p_{2}(x)\right)^{2}}{p_{1}(x)}
$$

The probabilistic symmetric χ^{2}-measure is a distance on \mathcal{P}, defined by

$$
2 \sum_{x} \frac{\left(p_{1}(x)-p_{2}(x)\right)^{2}}{p_{1}(x)+p_{2}(x)}
$$

The half of the probabilistic symmetric χ^{2}-measure is called squared χ^{2}.

- Separation quasi-distance

The separation distance is a quasi-distance on \mathcal{P} (for a countable \mathcal{X}) defined by

$$
\max _{x}\left(1-\frac{p_{1}(x)}{p_{2}(x)}\right)
$$

(Not to be confused with separation distance in Chap.9.)

- Kullback-Leibler distance

The Kullback-Leibler distance (or relative entropy, information deviation, information gain, KL-distance) is a quasi-distance on \mathcal{P}, defined by

$$
K L\left(P_{1}, P_{2}\right)=\mathbb{E}_{P_{1}}[\ln L]=\sum_{x} p_{1}(x) \ln \frac{p_{1}(x)}{p_{2}(x)}
$$

where $L=\frac{p_{1}(x)}{p_{2}(x)}$ is the likelihood ratio. Therefore,

$$
K L\left(P_{1}, P_{2}\right)=-\sum_{x}\left(p_{1}(x) \ln p_{2}(x)\right)+\sum_{x}\left(p_{1}(x) \ln p_{1}(x)\right)=H\left(P_{1}, P_{2}\right)-H\left(P_{1}\right)
$$

where $H\left(P_{1}\right)$ is the entropy of P_{1}, and $H\left(P_{1}, P_{2}\right)$ is the cross-entropy of P_{1} and P_{2}.

If P_{2} is the product of marginals of P_{1} (say, $p_{2}(x, y)=p_{1}(x) p_{1}(y)$), the KL-distance $K L\left(P_{1}, P_{2}\right)$ is called the Shannon information quantity and (cf. Shannon distance) is equal to $\sum_{(x, y) \in \mathcal{X} \times \mathcal{X}} p_{1}(x, y) \ln \frac{p_{1}(x, y)}{p_{1}(x) p_{1}(y)}$.

- Skew divergence

The skew divergence is a quasi-distance on \mathcal{P}, defined by

$$
K L\left(P_{1}, a P_{2}+(1-a) P_{1}\right)
$$

where $a \in[0,1]$ is a constant, and $K L$ is the Kullback-Leibler distance.
The cases $a=1$ and $a=\frac{1}{2}$ correspond to $K L\left(P_{1}, P_{2}\right)$ and K-divergence.

- Jeffrey divergence

The Jeffrey divergence (or J-divergence, divergence distance, KL2distance) is a symmetric version of the Kullback-Leibler distance, defined by

$$
K L\left(P_{1}, P_{2}\right)+K L\left(P_{2}, P_{1}\right)=\sum_{x}\left(p_{1}(x)-p_{2}(x)\right) \ln \frac{p_{1}(x)}{p_{2}(x)}
$$

For $P_{1} \rightarrow P_{2}$, the Jeffrey divergence behaves like the χ^{2}-distance.

- Jensen-Shannon divergence

The Jensen-Shannon divergence is defined by

$$
a K L\left(P_{1}, P_{3}\right)+(1-a) K L\left(P_{2}, P_{3}\right),
$$

where $P_{3}=a P_{1}+(1-a) P_{2}$, and $a \in[0,1]$ is a constant (cf. clarity similarity).

In terms of entropy $H(P)=-\sum_{x} p(x) \ln p(x)$, the Jensen-Shannon divergence is equal to $H\left(a P_{1}+(1-a) P_{2}\right)-a H\left(P_{1}\right)-(1-a) H\left(P_{2}\right)$.

- Topsøe distance

Let P_{3} denote $\frac{1}{2}\left(P_{1}+P_{2}\right)$. The Topsøe distance (or information statistics) is a symmetric version of the Kullback-Leibler distance (or rather of the K-divergence $\left.K L\left(P_{1}, P_{3}\right)\right)$:

$$
K L\left(P_{1}, P_{3}\right)+K L\left(P_{2}, P_{3}\right)=\sum_{x}\left(p_{1}(x) \ln \frac{p_{1}(x)}{p_{3}(x)}+p_{2}(x) \ln \frac{p_{2}(x)}{p_{3}(x)}\right)
$$

The Topsøe distance is twice the Jensen-Shannon divergence with $a=\frac{1}{2}$. Some authors use the term Jensen-Shannon divergence only for this value of a. It is not a metric, but its square root is a metric.

The Taneja distance is defined by

$$
\sum_{x} p_{3}(x) \ln \frac{p_{3}(x)}{\sqrt{p_{1}(x) p_{2}(x)}}
$$

- Resistor-average distance

The Johnson-Simanović's resistor-average distance is a symmetric version of the Kullback-Leibler distance on \mathcal{P} which is defined by the harmonic sum

$$
\left(\frac{1}{K L\left(P_{1}, P_{2}\right)}+\frac{1}{K L\left(P_{2}, P_{1}\right)}\right)^{-1}
$$

Cf. resistance metric for graphs in Chap. 15.

- Ali-Silvey distance

The Ali-Silvey distance is a quasi-distance on \mathcal{P}, defined by the functional

$$
f\left(\mathbb{E}_{P_{1}}[g(L)]\right)
$$

where $L=\frac{p_{1}(x)}{p_{2}(x)}$ is the likelihood ratio, f is a non-decreasing function on \mathbb{R}, and g is a continuous convex function on $\mathbb{R}_{\geq 0}$ (cf. f-divergence of Csizar).

The case $f(x)=x, g(x)=x \ln x$ corresponds to the Kullback-Leibler distance; the case $f(x)=-\ln x, g(x)=x^{t}$ corresponds to the Chernoff distance.

- Chernoff distance

The Chernoff distance (or Rényi cross-entropy) is a distance on \mathcal{P}, defined by

$$
\max _{t \in[0,1]} D_{t}\left(P_{1}, P_{2}\right)
$$

where $0 \leq t \leq 1$ and $D_{t}\left(P_{1}, P_{2}\right)=-\ln \sum_{x}\left(p_{1}(x)\right)^{t}\left(p_{2}(x)\right)^{1-t}$ (called the Chernoff coefficient or Hellinger path), which is proportional to the Rényi distance.

The case $t=\frac{1}{2}$ corresponds to the Bhattacharya distance 2 .

- Rényi distance

The Rényi distance (or order t Rényi entropy) is a quasi-distance on \mathcal{P}, defined, for any constant $0 \leq t<1$, by

$$
\frac{1}{1-t} \ln \sum_{x} p_{2}(x)\left(\frac{p_{1}(x)}{p_{2}(x)}\right)^{t}
$$

The limit of the Rényi distance, for $t \rightarrow 1$, is the Kullback-Leibler distance. For $t=\frac{1}{2}$, one half of the Rényi distance is the Bhattacharya distance 2 (cf. f-divergence of Csizar and Chernoff distance).

- Clarity similarity

The clarity similarity is a similarity on \mathcal{P}, defined by

$$
\begin{gathered}
\left(K L\left(P_{1}, P_{3}\right)+K L\left(P_{2}, P_{3}\right)\right)-\left(K L\left(P_{1}, P_{2}\right)+K L\left(P_{2}, P_{1}\right)\right)= \\
=\sum_{x}\left(p_{1}(x) \ln \frac{p_{2}(x)}{p_{3}(x)}+p_{2}(x) \ln \frac{p_{1}(x)}{p_{3}(x)}\right)
\end{gathered}
$$

where $K L$ is the Kullback-Leibler distance, and P_{3} is a fixed probability law. It was introduced in [CCL01] with P_{3} being the probability distribution of English.

- Shannon distance

Given a measure space (Ω, \mathcal{A}, P), where the set Ω is finite and P is a probability measure, the entropy (or Shannon information entropy) of a function $f: \Omega \rightarrow X$, where X is a finite set, is defined by

$$
H(f)=-\sum_{x \in X} P(f=x) \log _{a}(P(f=x)) ;
$$

here $a=2, e$, or 10 and the unit of entropy is called a bit, nat, or dit (digit), respectively. The function f can be seen as a partition of the measure space. For any two such partitions $f: \Omega \rightarrow X$ and $g: \Omega \rightarrow Y$, denote by $H(f, g)$ the entropy of the partition $(f, g): \Omega \rightarrow X \times Y$ (joint entropy), and by $H(f \mid g)$ the conditional entropy (or equivocation); then the Shannon distance between f and g is a metric defined by

$$
H(f \mid g)+H(g \mid f)=2 H(f, g)-H(f)-H(g)=H(f, g)-I(f ; g)
$$

where $I(f ; g)=H(f)+H(g)-H(f, g)$ is the Shannon mutual information.
If P is the uniform probability law, then Goppa showed that the Shannon distance can be obtained as a limiting case of the finite subgroup metric.

In general, the information metric (or entropy metric) between two random variables (information sources) X and Y is defined by

$$
H(X \mid Y)+H(Y \mid X)=H(X, Y)-I(X ; Y)
$$

where the conditional entropy $H(X \mid Y)$ is defined by $\sum_{x \in X} \sum_{y \in Y} p(x, y)$ $\ln p(x \mid y)$, and $p(x \mid y)=P(X=x \mid Y=y)$ is the conditional probability.

The Rajski distance (or normalized information metric) is defined (Rajski 1961, for discrete probability distributions X, Y) by

$$
\frac{H(X \mid Y)+H(Y \mid X)}{H(X, Y)}=1-\frac{I(X ; Y)}{H(X, Y)} .
$$

It is equal to 1 if X and Y are independent. (Cf., a different one, normalized information distance in Chap. 11).

- Kantorovich-Mallows-Monge-Wasserstein metric

Given a metric space (\mathcal{X}, d), the Kantorovich-Mallows-MongeWasserstein metric is defined by

$$
\inf \mathbb{E}_{S}[d(X, Y)]
$$

where the infimum is taken over all joint distributions S of pairs (X, Y) of random variables X, Y such that marginal distributions of X and Y are P_{1} and P_{2}.

For any separable metric space (\mathcal{X}, d), this is equivalent to the Lipschitz distance between measures $\sup _{f} \int f d\left(P_{1}-P_{2}\right)$, where the supremum is taken over all functions f with $|f(x)-f(y)| \leq d(x, y)$ for any $x, y \in \mathcal{X}$.

More generally, the L_{p}-Wasserstein distance for $\mathcal{X}=\mathbb{R}^{n}$ is defined by

$$
\left(\inf \mathbb{E}_{S}\left[d^{p}(X, Y)\right]\right)^{1 / p}
$$

and, for $p=1$, it is also called the $\bar{\rho}$-distance. For $(\mathcal{X}, d)=(\mathbb{R},|x-y|)$, it is also called the L_{p}-metric between distribution functions (CDF), and can be written as

$$
\begin{aligned}
\left(\inf \mathbb{E}\left[|X-Y|^{p}\right]\right)^{1 / p} & =\left(\int_{\mathbb{R}}\left|F_{1}(x)-F_{2}(x)\right|^{p} d x\right)^{1 / p} \\
& =\left(\int_{0}^{1}\left|F_{1}^{-1}(x)-F_{2}^{-1}(x)\right|^{p} d x\right)^{1 / p}
\end{aligned}
$$

with $F_{i}^{-1}(x)=\sup _{u}\left(P_{i}(X \leq x)<u\right)$.
The case $p=1$ of this metric is called the Monge-Kantorovich metric or Hutchinson metric (in Fractal Theory), Wasserstein metric, Fortet-Mourier metric.

- Ornstein \bar{d}-metric

The Ornstein \bar{d}-metric is a metric on $\mathcal{P}\left(\right.$ for $\left.\mathcal{X}=\mathbb{R}^{n}\right)$, defined by

$$
\frac{1}{n} \inf \int_{x, y}\left(\sum_{i=1}^{n} 1_{x_{i} \neq y_{i}}\right) d S
$$

where the infimum is taken over all joint distributions S of pairs (X, Y) of random variables X, Y such that marginal distributions of X and Y are P_{1} and P_{2}.

