Presentation on the term paper:
A Simple Proof of the EPI via Properties of the Mutual Information
by
Olivier Rioul

Saurabh Deshpande

20 April 2011

Outline

- What the paper is about?
- Relationship between FI and MMSE
- Dual versions of de Bruijn's Identity
- Equivalent Integral Representations of $h(X)$
- Proofs of EPI via Integral Representations of $h(X)$
- New Proof of EPI

About the paper: EPI \& its Two Different Proofs

- Entropy-Power Inequality (EPI): $\quad X \perp Y$ (r.v. s)

$$
\begin{align*}
\exp (2 h(X+Y)) & \geq \exp (2 h(X))+\exp (2 h(Y)) \\
& \mathbb{\|} \tag{1}\\
h(\sqrt{\lambda} X+\sqrt{1-\lambda} Y) & \geq \lambda h(X)+(1-\lambda) h(Y)
\end{align*}
$$

- Proof 1 (Stam-1959, Blachman-1965): $\quad X \perp Z \sim \mathcal{N}(0,1)$ Based on Fisher Information (FI) and de Bruijn's identity

$$
\begin{equation*}
\left.\frac{d}{d t} h(X+\sqrt{t} Z)\right|_{t=0}=\frac{1}{2} J(X) \tag{2}
\end{equation*}
$$

About the paper

- Proof 2 (Verdú-Guo-2006): $\quad X \perp Z \sim \mathcal{N}(0,1)$

Based on Minimum Mean-Square Error (MMSE) estimator in Gaussian Channels and the identity

$$
\begin{align*}
\frac{d}{d t} I(X ; X+\sqrt{t} Z) & =\frac{1}{2} \operatorname{mmse}(X \mid \sqrt{t} X+Z) \\
I(X ; Y) & =h(Y)-h(Y \mid X) \tag{3}\\
\operatorname{mmse}(X \mid Y) & =\mathbb{E}\left[(X-\mathbb{E}[X \mid Y])^{2}\right]
\end{align*}
$$

- What does the paper do? (Note: h in (2) and $/$ in (3) are related.)
- Addresses the question: (So,) How are the J in (2) and mmse in (3) related?
- Derives equivalent integral representations of $h(X)$.
- Gives alternatives to the two proofs via the integral representations of $h(X)$.
- Gives a new proof of EPI based on the data processing inequality for I.

Relationship between FI and MMSE

- Recall FI: $p(x)$: probability density function of X

$$
J(X):=\mathbb{E}\left[S^{2}(X)\right], \quad S(X):=\frac{\dot{p}(X)}{p(X)} . \quad(\mathbb{E}[S(X)]=0)
$$

- (Eq. after (10) in) Blachman-1965:

$$
\begin{gathered}
S(X+Z)=\mathbb{E}[S(Z) \mid X+Z] \quad\{* * * * *\} \\
\bullet \quad J(X+Z)=\operatorname{Var}[S(X+Z)]=\operatorname{Var}[\mathbb{E}[S(Z) \mid X+Z]]
\end{gathered}
$$

- Law of total variance:

$$
\operatorname{Var}[U]=\operatorname{Var}[U \mid V]+\operatorname{Var}[\mathbb{E}[U \mid V]]
$$

where $\operatorname{Var}[U \mid V]:=\mathbb{E}\left[(U-\mathbb{E}[U \mid V])^{2}\right]$.
\mathbb{E} [] over joint distribution of U and $V \Longrightarrow \operatorname{Var}[U \mid V]$ is a no.

- $\Longrightarrow \quad \operatorname{Var}[\mathbb{E}[S(Z) \mid X+Z]]=\operatorname{Var}[S(Z)]-\operatorname{Var}[S(Z) \mid X+Z]$

FI and MMSE

- Identify $\operatorname{Var}[S(Z) \mid X+Z]=\operatorname{mmse}(S(Z) \mid X+Z) \quad\{* * * * *\}$
$\bullet \Longrightarrow$

$$
\begin{aligned}
J(X+Z) & =\operatorname{Var}[S(Z)]-\operatorname{mmse}(S(Z) \mid X+Z) \\
& =J(Z)-\operatorname{mmse}(S(Z) \mid X+Z)
\end{aligned}
$$

- $Z \sim \mathcal{N}\left(0, \sigma^{2}\right) \quad \Longrightarrow \quad S(Z)=-\frac{Z}{\operatorname{Var}[Z]}, \quad J(Z)=\frac{1}{\operatorname{Var}[Z]}$
- \Longrightarrow

$$
\begin{equation*}
\operatorname{Var}[Z] J(X+Z)+J(Z) \operatorname{mmse}(X \mid X+Z)=1, \quad Z \sim \mathcal{N}\left(0, \sigma^{2}\right) \tag{4}
\end{equation*}
$$

- \Longrightarrow

$$
\begin{equation*}
J(X+Z)+\operatorname{mmse}(X \mid X+Z)=1, \quad Z \sim \mathcal{N}(0,1) \tag{5}
\end{equation*}
$$

First Dual version of De Bruijn's Identity

- Begin from de Bruijn's Identity (2)

$$
\begin{align*}
\left.\frac{d}{d t} h(Y+\sqrt{t} Z)\right|_{t=0} & =\frac{1}{2} J(Y), \quad Y \perp Z \sim \mathcal{N}(0,1) \\
& \Downarrow Y=X+\sqrt{t^{\prime} Z^{\prime}}, \quad X \perp Z^{\prime} \perp Z, \\
& \Downarrow \quad Z^{\prime} \sim \mathcal{N}(0,1), \quad t^{\prime} \neq 0
\end{aligned} \quad \begin{aligned}
&=\frac{1}{2} J\left(X+\sqrt{\left.t^{\prime} Z^{\prime}\right)}\right. \\
& \frac{d}{d t} h\left(X+\sqrt{\left.t^{\prime} Z^{\prime}+\sqrt{t} Z\right)\left.\right|_{t=0}} \begin{array}{rl}
& \Downarrow \sqrt{t^{\prime} Z^{\prime}+\sqrt{t} Z \sim \sqrt{t^{\prime}+t} Z^{\prime}} \\
\left.\frac{d}{d t} h\left(X+\sqrt{t^{\prime}+t} Z^{\prime}\right)\right|_{t=0} & =\frac{1}{2} J\left(X+\sqrt{\left.t^{\prime} Z^{\prime}\right)}\right. \\
& \Downarrow t^{\prime}+t=u
\end{array}\right. \\
&\left|\frac{d}{d u} h\left(X+\sqrt{u} Z^{\prime}\right)\right|_{u=t^{\prime}}=\left.\frac{1}{2} J\left(X+\sqrt{u} Z^{\prime}\right)\right|_{u=t^{\prime}}, \quad \forall t^{\prime}>0 . \\
& \hline
\end{align*}
$$

Second Dual version of De Bruijn's Identity

- $Z \sim \mathcal{N}(0,1)$

$$
\begin{align*}
\frac{d}{d t} h(Z+\sqrt{t} X) & =\frac{d}{d t}\left\{h\left(\frac{Z}{\sqrt{t}}+X\right)+\frac{1}{2} \log t\right\} \\
& \Downarrow u=1 / t \\
& =-\frac{1}{t^{2}} \frac{d}{d u} h(X+\sqrt{u} Z)+\frac{1}{2 t} \\
& \Downarrow(6) \\
& =-\frac{1}{2 t^{2}} J(X+\sqrt{u} Z)+\frac{1}{2 t} \\
& \Downarrow J(\sqrt{t} X)=J(X) / t \\
& =-\frac{1}{2 t} J(\sqrt{t} X+Z)+\frac{1}{2 t} \tag{7}
\end{align*}
$$

Second Dual version ...

- Recall relation between FI \& MMSE (5) (+ replace X by $\sqrt{t} X)$:

$$
\begin{equation*}
J(\sqrt{t} X+Z)+t \operatorname{mmse}(X \mid \sqrt{t} X+Z)=1, \quad Z \sim \mathcal{N}(0,1) \tag{8}
\end{equation*}
$$

- Use $J(\sqrt{t} X+Z)$ from (8) in earlier (7):

$$
\begin{gather*}
\frac{d}{d t} h(Z+\sqrt{t} X)=-\frac{1}{2 t}\{1-t \operatorname{mmse}(X \mid \sqrt{t} X+Z)\}+\frac{1}{2 t} \\
\quad \Longrightarrow \quad \frac{d}{d u} h(\sqrt{t} X+Z)=\frac{1}{2} \operatorname{mmse}(X \mid \sqrt{t} X+Z) . \tag{9}
\end{gather*}
$$

First Integral Representation of $h(X)$

- Define $D_{h}(X):=h\left(X_{G}\right)-h(X), \quad X_{G} \sim \mathcal{N}(\mathbb{E}[X], \operatorname{Var}[X])$
- $D_{h}(X)$: a measure of non-Gaussianness of X
- Properties of $D_{h}(X)$:

$$
\begin{aligned}
& \text { - } D_{h}(t X)=D_{h}(X) \\
& \text { - }\left.D_{h}(X+\sqrt{t} Z)\right|_{t=0}=D_{h}(X)
\end{aligned}
$$

$$
\text { - } Z \sim \mathcal{N}\left(0, \sigma^{2}\right) \Longrightarrow
$$

$$
\lim _{t \rightarrow \infty} D_{h}(X+\sqrt{t} Z)=\lim _{t \rightarrow \infty} D_{h}\left(\frac{X}{\sqrt{t}}+Z\right)=D_{h}(Z)=0
$$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d}{d t} D_{h}(X+\sqrt{t} Z) d t=-D_{h}(X) \tag{10}
\end{equation*}
$$

- Some Details

First Integral Representation of $h(X)$

- Define $D_{J}(X):=J(X)-J\left(X_{G}\right), \quad X_{G} \sim \mathcal{N}(\mathbb{E}[X], \operatorname{Var}[X])$
- $D_{J}(X)$: another measure of non-Gaussianness of X
- First dual version of de Bruijn's inequality (6) \Longrightarrow

$$
\frac{d}{d t} D_{h}(X+\sqrt{t} Z) d t=-\frac{1}{2} D_{J}(X+\sqrt{t} Z)
$$

- Integrating above from $t=0$ to ∞ and using $(10) \Longrightarrow$

$$
\begin{equation*}
D_{h}(X)=\frac{1}{2} \int_{0}^{\infty} D_{J}(X+\sqrt{t} Z) d t \tag{11}
\end{equation*}
$$

or

$$
h(X)=h\left(X_{G}\right)-\frac{1}{2} \int_{0}^{\infty} D_{J}(X+\sqrt{t} Z) d t
$$

- Some Details

Second Integral Representation of $h(X)$

- Define $D_{V}(X \mid Y):=\operatorname{mmse}\left(X_{G} \mid Y_{G}\right)-\operatorname{mmse}(X \mid Y)$, $X_{G} \sim \mathcal{N}(\mathbb{E}[X], \operatorname{Var}[X]), Y_{G} \sim \mathcal{N}(\mathbb{E}[Y], \operatorname{Var}[Y])$
- $D_{V}(X)$: still another measure of non-Gaussianness of X

$$
\begin{align*}
& \left.D_{h}(\sqrt{t} X+Z)\right|_{t=0}=0 \\
& \lim _{t \rightarrow \infty} D_{h}(\sqrt{t} X+Z)=\lim _{t \rightarrow \infty} D_{h}\left(X+\frac{Z}{\sqrt{t}}\right)=D_{h}(X) \tag{12}
\end{align*}
$$

- Second dual version of de Bruijn's inequality (9) \Longrightarrow

$$
\frac{d}{d t} D_{h}(\sqrt{t} X+Z) d t=\frac{1}{2} D_{V}(X \mid \sqrt{t} X+Z)
$$

- Integrating above from $t=0$ to ∞ and using (12) \Longrightarrow

$$
\begin{equation*}
D_{h}(X)=\frac{1}{2} \int_{0}^{\infty} D_{V}(X \mid \sqrt{t} X+Z) d t \tag{13}
\end{equation*}
$$

- Some Details

Relationship between the 2 Two Integral Representations \& EPI

- (4) $\Longrightarrow D_{J}(X+Z)=D_{V}(X \mid X+Z)$
- $u=1 / t$ in (13) \Longrightarrow (11)
- Equality in EPI holds for Gaussians \Longrightarrow EPI (1) in terms of $D_{h}(X)$: $D_{h}(W) \leq \lambda D_{h}(X)+(1-\lambda) D_{h}(Y), \quad W:=\sqrt{\lambda} X+\sqrt{1-\lambda} Y$
- Integral representation (11) \Longrightarrow

$$
\begin{align*}
& D_{J}(W+\sqrt{t} Z) \leq \lambda D_{J}(X+\sqrt{t} Z)+(1-\lambda) D_{J}(Y+\sqrt{t} Z) \Longrightarrow \text { EPI } \\
& \quad \mathbb{\Downarrow} \\
& J(W+\sqrt{t} Z) \leq \lambda J(X+\sqrt{t} Z)+(1-\lambda) J(Y+\sqrt{t} Z) \tag{14}
\end{align*}
$$

- Integral representation (13) \Longrightarrow

$$
\begin{aligned}
& D_{V}(W \mid \sqrt{t} W+Z) \leq \\
& \lambda D_{V}(X \mid \sqrt{t} X+Z)+(1-\lambda) D_{V}(Y \mid \sqrt{t} Y+Z) \Longrightarrow \mathrm{EPI}
\end{aligned}
$$

$$
\begin{align*}
& \mathbb{\|} \\
& \mathrm{mmse}(W \mid \sqrt{t} W+Z) \geq \\
& \lambda \mathrm{mmse}(X \mid \sqrt{t} X+Z)+(1-\lambda) \mathrm{mmse}(Y \mid \sqrt{t} Y+Z)_{\equiv} \tag{15}
\end{align*}
$$

Alternative Proofs of EPI based on FI \& MMSE

- $\tilde{X}:=X+\sqrt{t} Z, \tilde{Y}:=Y+\sqrt{t} Z$ (14) $\Leftrightarrow J(\sqrt{\lambda} \tilde{X}+\sqrt{1-\lambda} \tilde{Y}) \leq \lambda J(\tilde{X})+(1-\lambda) J(\tilde{Y})$
: FI Property 4 seen in class!
- Interpretation: In terms of Cramér-Rao lower bound, estimation from individual measurements of independent r.v. s is better than that from the sum of the measurements.
- FI Property 4 seen in class $\Longrightarrow(14) \Longrightarrow$ EPI.
- (9)-(10) in Verdú-Guo-2006 \Longrightarrow
mmse $\left(W \mid \sqrt{t} W+\sqrt{\lambda} Z^{\prime}+\sqrt{1-\lambda} Z^{\prime \prime}\right) \geq$ mmse $\left(W \mid \sqrt{t} X+Z^{\prime}, \sqrt{t} Y+Z^{\prime \prime}\right)$
\Longrightarrow (15)
- Interpretation: In terms of MMSE, estimation from individual measurements of independent r.v. s is better than that from the sum of the measurements.
- (9)-(10) in Verdú-Guo-2006 $\Longrightarrow(15) \Longrightarrow$ EPI.

New Proof of EPI based on Mutual Information

- Abstract key ingredients in the proofs of EPI:
- 2 (independent) variables jointly bring more information than their sum
- Gaussian perturbation argument using an auxilliary variable Z
- Recall:

(5)
- Why not use Mutual Information directly to prove EPI?

New Proof of EPI

- First key ingredient in terms of Mutual Information : well-known Data Processing Inequality for Mutual Information:

$$
\begin{equation*}
I(W+\sqrt{t} Z ; Z) \leq I(X+\sqrt{\lambda t} Z, Y+\sqrt{(1-\lambda) t} Z ; Z) \tag{16}
\end{equation*}
$$

- Recall: $W+\sqrt{t} Z=\sqrt{\lambda}(X+\sqrt{\lambda t} Z)+\sqrt{1-\lambda}(Y+\sqrt{(1-\lambda) t} Z)$
- Apply Chain Rule of Mutual Information to (16). (Details

$$
\begin{equation*}
I(W+\sqrt{t} Z ; Z) \leq I(X+\sqrt{\lambda t} Z ; Z)+I(Y+\sqrt{(1-\lambda) t} Z ; Z) \tag{17}
\end{equation*}
$$

- Gaussian perturbations \Longrightarrow smooth densities \Longrightarrow $I(X+\sqrt{t} Z ; Z)$ and $I(Y+\sqrt{t} Z ; Z)$ are differentiable w.r.t. t.
- It can be proved that (Details -

$$
\begin{align*}
I(X+\sqrt{\lambda t} Z ; Z) & =\lambda I(X+\sqrt{t} Z ; Z)+o(t) \\
I(Y+\sqrt{(1-\lambda) t} Z ; Z) & =(1-\lambda) I(Y+\sqrt{t} Z ; Z)+o(t) \tag{18}
\end{align*}
$$

New Proof of EPI

- (17) \& (18) \Longrightarrow

$$
\begin{equation*}
I(W+\sqrt{t} Z ; Z) \leq \lambda I(X+\sqrt{t} Z ; Z)+(1-\lambda) I(Y+\sqrt{t} Z ; Z)+o(t) \tag{19}
\end{equation*}
$$

- $X^{\prime}:=X+\sqrt{t^{\prime}} Z_{1}, Y^{\prime}:=Y+\sqrt{t^{\prime}} Z_{2}, \quad Z_{1}, Z_{2}, Z$ i.i.d.
- Gaussian perturbations \Longrightarrow smooth densities \Longrightarrow (19) applicable
- Suitable rearrangement (Details \varnothing) \Longrightarrow

$$
\begin{aligned}
& \left.f\left(t^{\prime}+t\right) \leq f\left(t^{\prime}\right)+o(t), \quad \text { (i.e., } f(t) \text { is non-increasing }\right) \\
& f(t):=I(W+\sqrt{t} Z ; Z)-\lambda I(X+\sqrt{t} Z ; Z)-(1-\lambda) I(Y+\sqrt{t} Z ; Z)
\end{aligned}
$$

- \perp of r.v. $s \Longrightarrow f(0)=0 \Longrightarrow f(t) \leq 0 \Longrightarrow$

$$
\begin{equation*}
I(W+\sqrt{t} Z ; Z) \leq \lambda I(X+\sqrt{t} Z ; Z)+(1-\lambda) I(Y+\sqrt{t} Z ; Z) \tag{21}
\end{equation*}
$$

Final Steps in the New Proof of EPI

- Use identity $I(U+\sqrt{t} Z ; Z)=I(U+\sqrt{t} Z ; U)-h(U)+h(Z)$
- Rearrange (21): $\forall t>0$,

$$
\begin{align*}
h(W)-\lambda h(X)-(1-\lambda) h(Y) & \geq \\
I(W+\sqrt{t} Z ; W)-\lambda I(X+\sqrt{t} Z ; X) & -(1-\lambda) I(Y+\sqrt{t} Z ; Y) \tag{22}
\end{align*}
$$

- For any $U \perp Z$,

$$
\begin{aligned}
I(U+\sqrt{t} Z ; U)= & I\left(\frac{U}{\sqrt{t}}+Z ; U\right), \quad \text { due to scale-invariance of } I \\
= & h\left(\frac{U}{\sqrt{t}}+Z\right)-h(Z), \quad \text { due to } \quad U \perp Z \\
& \leq h\left(\frac{U_{G}}{\sqrt{t}}+Z\right)-h(Z), \quad \text { due to } D_{h}(U) \geq 0 \\
& =\frac{1}{2} \log \left(1+\frac{\operatorname{Var}[U]}{t \operatorname{Var}[Z]}\right)
\end{aligned}
$$

The New Proof completed ... :-)

$$
\lim _{t \rightarrow \infty} I(U+\sqrt{t} Z ; U) \leq \lim _{t \rightarrow \infty} \frac{1}{2} \log \left(1+\frac{\operatorname{Var}[U]}{t \operatorname{Var}[Z]}\right)=0
$$

- Mutual Information $(I(U+\sqrt{t} Z ; U))$ is non-negative
- $\Longrightarrow \lim _{t \rightarrow \infty} I(U+\sqrt{t} Z ; U)=0$
- As $t \rightarrow \infty,(22) \Longrightarrow$

$$
h(W)-\lambda h(X)-(1-\lambda) h(Y) \geq 0 . \quad \square
$$

: EPI (1)

Questions?

Thank You

Extra Details 1

- $h\left(X_{G}\right)=\frac{1}{2} \log (2 \pi e \operatorname{Var}[X])$
- scale invariance of $D_{h}(X)$:

$$
D_{h}(t X)=h(Y)-h(t X), \quad Y \sim \mathcal{N}(\mathbb{E}[t X], \operatorname{Var}[t X])
$$

Hence, $Y \sim t \mathcal{N}(\mathbb{E}[X], \operatorname{Var}[X]) \sim t X_{G}$.
Hence,
$D_{h}(t X)=h\left(t X_{G}\right)-h(t X)=h\left(X_{G}\right)+\log |t|-h(X)-\log |t|=D_{h}(X)$.

- $D_{J}(X) \geq 0$: Property 2 of $J(X)$ seen in class (special case of Cramér-Rao Inequality)
- $D_{V}(X) \geq 0$: Property of the MMSE (sub-optimal for non-Gaussians)
- The above two \& (11), (13) $\quad \Longrightarrow \quad h\left(X_{G}\right) \geq h(X)$

Application of Chain Rule for Mutual Information to (16)

- $U:=X+\sqrt{\lambda t} Z, \quad V:=Y+\sqrt{(1-\lambda) t} Z$

$$
\begin{aligned}
I(U, V ; Z)= & I(U ; Z)+I(V ; Z \mid U), \\
& \leq I(U ; Z)+I(V ; Z \mid U)+I(U ; V), \quad \because I(U ; V) \geq 0 \\
& =I(U ; Z)+I(V ; Z, U) \\
& =I(U ; Z)+I(V ; Z)+I(U ; V \mid Z) .
\end{aligned}
$$

- $X \perp Y \Longrightarrow U \perp V$ given $Z \Longrightarrow I(U ; V \mid Z)=0 \Longrightarrow$

$$
I(U, V ; Z) \leq I(U ; Z)+I(V ; Z) . \square
$$

Extra Details 2

- $\left.I(X+\sqrt{t} Z ; Z)\right|_{t=0}=I(X ; Z)=0$, since $X \perp Z$
- Differentiability of $I(X+\sqrt{t} Z ; Z)$ w.r.t. $t \Longrightarrow$

$$
\begin{align*}
\exists \lim _{t \rightarrow 0} \frac{I(X+\sqrt{t} Z ; Z)-I(X ; Z)}{t} & =\lim _{t \rightarrow 0} \frac{I(X+\sqrt{t} Z ; Z)}{t} \\
& \Downarrow t \rightarrow \lambda t \tag{23}\\
& =\lim _{\lambda t \rightarrow 0} \frac{I(X+\sqrt{\lambda t} Z ; Z)}{\lambda t}
\end{align*}
$$

- Hence

$$
\frac{I(X+\sqrt{t} Z ; Z)}{t}=\frac{I(X+\sqrt{\lambda t} Z ; Z)}{\lambda t}+\frac{o(t)}{t}, \quad \lim _{t \rightarrow 0} \frac{o(t)}{t}=0
$$

- Rearrangement \Longrightarrow

$$
I(X+\sqrt{\lambda t} Z ; Z)=\lambda I(X+\sqrt{t} Z ; Z)+o(t)
$$

Rearrangement

- Identity $I\left(X+\sqrt{t^{\prime}} Z_{1}+\sqrt{t} Z ; Z\right)=$

$$
I\left(X+\sqrt{t^{\prime}} Z_{1}+\sqrt{t} Z ; \sqrt{t^{\prime}} Z_{1}+\sqrt{t} Z\right)-I\left(X+\sqrt{t^{\prime}} Z_{1} ; Z_{1}\right)
$$

- Stability of Gaussian Distribution \&

$$
Z_{1} \sim Z \Longrightarrow \sqrt{t^{\prime}} Z_{1}+\sqrt{t} Z \sim \sqrt{t^{\prime}+t} Z
$$

- Hence, Identity becomes

$$
\begin{align*}
I\left(X+\sqrt{t^{\prime}} Z_{1}+\sqrt{t} Z ; Z\right) & =f_{X}\left(t^{\prime}+t\right)-f_{X}\left(t^{\prime}\right) \tag{24}\\
f_{X}(t) & :=I(X+\sqrt{t} Z ; Z)
\end{align*}
$$

- Similarly, we have

$$
\begin{align*}
& I\left(Y+\sqrt{t^{\prime}} Z_{2}+\sqrt{t} Z ; Z\right)=f_{Y}\left(t^{\prime}+t\right)-f_{Y}\left(t^{\prime}\right) \tag{25}\\
& I\left(W+\sqrt{t^{\prime}} \hat{Z}+\sqrt{t} Z ; Z\right)=f_{W}\left(t^{\prime}+t\right)-f_{W}\left(t^{\prime}\right) \tag{26}\\
& \text { where } \hat{Z}=\sqrt{\lambda} Z_{1}+\sqrt{1-\lambda} Z_{2} \Longrightarrow \hat{Z} \sim Z
\end{align*}
$$

- (26) - (24) - (25) \Longrightarrow (20).

