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Substituting (49), (48), and (50) into (47), and using the fact that is
self-orthogonal, we obtain

right-hand side of (44)

where

and the assertion of the lemma follows.
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The Worst Additive Noise Under a Covariance Constraint

Suhas N. Diggavi, Member, IEEE, and ThomasM. Cover, Fellow, IEEE

Abstract—The maximum entropy noise under a lag autocorrelation
constraint is known by Burg’s theorem to be the th order Gauss–Markov
process satisfying these constraints. The question is, what is the worst ad-
ditive noise for a communication channel given these constraints? Is it the
maximum entropy noise?
The problem becomes one of extremizing the mutual information over

all noise processes with covariances satisfying the correlation constraints
. For high signal powers, the worst additive noise is Gauss–

Markov of order as expected. But for low powers, the worst additive noise
is Gaussian with a covariance matrix in a convex set which depends on the
signal power.
Index Terms—Burg’s theorem, mutual information game, worst additive

noise.

I. INTRODUCTION

This correspondence treats a simple problem. What is the noisiest
noise under certain constraints? There are two possible contexts
in which we might ask this question. One is, what is the noisiest
random process satisfying, for example, a lag covariance constraint,

, . Thus, we ask for the maximum
entropy rate for such a process. It is well known from Burg’s work [1],
[2] that the maximum-entropy noise process under lag constraints
is the th-order Gauss–Markov process satisfying these constraints,
i.e., it is the process that has minimal dependency on the past given
the covariance constraints.
Another context in which we might ask this question is for an ad-

ditive noise channel , where the noise has covariance
constraints and the signal has a power constraint .
What is the worst possible additive noise subject to these constraints?
We expect the answer to be the maximum-entropy noise, as in the first
problem. Indeed, we find this is the case, but only when the signal
power is high enough to fill the spectrum of the maximum-entropy
noise (yielding a white noise sum).
Consider the channel

(1)

Manuscript received September 9, 1999; revised September 25, 2000. This
work was supported in part by the National Science Foundation under Grant
NSF CCR-9973134 and by ARMY (MURI) DAAD19-99-1-0252. The material
in this correspondence was presented in part at the International Symposium on
Information Theory (ISIT), Ulm, Germany, June 1997.
S. N. Diggavi is with AT&T Shannon Laboratories, Florham Park, New

Jersey, NJ 07932 USA (e-mail: suhas@research.att.com).
T. M. Cover is with the Information Systems Laboratory, Stanford University,

Stanford, CA 94305 USA (e-mail: cover@isl.stanford.edu).
Communicated by S. Shamai, Associate Editor for Shannon Theory.
Publisher Item Identifier S 0018-9448(01)08962-3.

0018–9448/01$10.00 © 2001 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001 3073

where is the transmitted signal and is the additive noise. Trans-
mission over additive Gaussian noise channels has been well studied
over the past several decades [1]. The capacity is achieved by using
Gaussian signaling and water-filling over the noise spectrum [1]. The
question of communication over partially known additive noise chan-
nels is addressed in [3]–[5], where the class of memoryless noise pro-
cesses with average power constraint is considered. A game-theo-
retic problem [3]–[5] is formulated with a mutual information payoff,
where the sender maximizes mutual information, and the noise mini-
mizes it, subject to average power constraints. It has been shown that
an independent and identically distributed (i.i.d.) Gaussian signaling
scheme and an i.i.d. Gaussian noise distribution are robust, in that any
deviation of either the signal or noise distribution reduces or increases
(respectively) the mutual information. Hence, the solution to this game-
theoretic problem yields a rate of , where and
are the signal and noise power constraints, respectively.
An excellent survey for communication under channel uncertainties

is given in [6]. In [7], [8], a game-theoretic problem with Gaussian
inputs transmitted over a jamming channel (having an average power
constraint) is studied under a mean-squared error payoff function (for
estimation/detection). The problem of worst power-constrained noise
when the inputs are limited to the binary alphabet is considered in [9].
The more general -dimensional problem with average noise

power constraint is considered in [10], where it is shown that even
when the channel is not restricted to be memoryless, the white
Gaussian codebook and white Gaussian noise constitute a unique
saddle point. In [11], [12] (and references therein) it was shown that
a Gaussian codebook and minimum Euclidean distance decoding
achieves rate under an average power constraint.
Therefore, for average signal and noise power constraints the max-
imum-entropy noise is the worst additive noise for communication.
We ask whether this principle is true in more generality.
Suppose the noise is not memoryless and we have covariance con-

straints. If the signal is Gaussian with covariance and the noise is
Gaussian with covariance , the mutual information
is given by

It is well known that the mutual information is maximized by choosing
a signal covariance that waterfills [1]. The question we ask
is about communication over partially known additive noise channels
subject to covariance constraints. We first formulate the game-theo-
retic problem with mutual information as the payoff. The signal max-
imizes the mutual information and the noise minimizes it by choosing
distributions subject to covariance constraints. Note that the problem
considered is similar in formulation to the compound channel problem
[13], and, therefore, is more benign than the allowed noise in arbitrarily
varying channels [6], [12]. In [14], [15] the problem where a memory-
less interference which is statistically dependent on the input was con-
sidered. In this correspondence, the additive noise is independent of the
input but need not be memoryless.
We first show that Gaussian signaling and Gaussian noise consti-

tute a saddle point to the mutual information game with covariance
constraints. Therefore, we can restrict our attention to the solution of a
determinant game with payoff . To solve this problem,
one chooses the signal covariance and noise covariance to max-
imize and minimize (respectively) the payoff subject
to covariance constraints. Throughout this correspondence, we impose
an expected power constraint on the signal,

We will also assume that the noise covariance lies in a given convex
set , but the noise distribution is otherwise unspecified. For ex-
ample, the set of covariances satisfying correlation constraints

is a convex set. Also, for some of the results in the cor-
respondence, we assume , for all , i.e., the noise
processes are not degenerate.
We study the properties of the saddle points to the payoff function

. We show that the signaling covariance matrix is
unique and water-fills a set of worst noise covariance matrices. The set
of worst noise covariance matrices is shown to be convex and hence the
signaling scheme is protected against any mixture of noise covariances.
Therefore, choosing a Gaussian signaling scheme with covariance
which water-fills the class of worst covariancematrices will achieve the
minimaxmutual information. This establishes a single optimal strategy
for the sender (Gaussian with a certain covariance matrix designed to
water-fill the minimax noise) and a convex set of possible noise covari-
ances, all of which look the same “below the water line.”
Next, we re-examine the question of whether the maximum entropy

noise is the worst additive noise when we have a banded matrix con-
straint specified up to a certain covariance lag on the noise covariance
matrix. In this case, we show that if we have sufficient input power, the
maximum entropy noise is also the worst additive noise in the sense
that it achieves the saddle point and minimizes the mutual information.
We put forth the game-theoretic problem in Section II, establish the

existence of a saddle point and also study its properties. We consider
the banded noise covariance constraint in Section III. In Section IV, we
show this minimax rate is actually achievable using a random Gaussian
codebook and Mahalanobis distance decoding.

II. PROBLEM FORMULATION

The general problem is that of finding the maximum reliable com-
munication rate over all noise distributions subject to covariance con-
straints. Throughout this section, we assume that the constraint sets
and are closed, bounded, and convex. Note that we have implicitly
associated with and the topology of symmetric matrices,
i.e., that associated with , where . We need to
show that there exists a codebook that is simultaneously good for all
such noise distributions. We first guess that this problem can be solved
by solving the minimax mutual information game. Later, in Section IV,
we examine a random coding scheme and a decoding rule that achieves
this rate. Hence, the signal designer maximizes the mutual information
and the noise (nature) minimizes it, and this is the minimax communi-
cation capacity.
Therefore, we consider minimax problem

(2)

where

and , are probability measures defined on the Borel -algebra of
. The closure is defined in terms of the weak topology of probability

measures on [16, Sec. 2.2].We note that if the covariance constraint
sets are closed, then the sets can be proved to be closed
(without the closure operation) if the random processes are assumed to
have finite fourth moments. If there exist probability measures and

such that

(3)
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for all , where and are distributed ac-
cording to measures and , respectively, then is defined
as a saddle point for , and

is called the value of the game. To show the existence of such
a saddle point, we examine some properties of the mutual information
under input and noise constraints. We first show that there exist saddle
points which have Gaussian probability measures and .

Lemma II.1 [1, Ch. 9]: Let and be random vectors in
with the same covariance matrix . If and has
any other distribution, then

(4)

where denotes the probability density function of , and
and denote the expectations with respect to and ,

respectively.

The following result (Lemma II.2) has been proved by Ihara [17]
based on a result by Pinsker [18]. The alternative proof given below
shows the condition for which equality holds. In the proof, we assume
the noise has a probability density function.

Lemma II.2: Let , and let and be random
vectors in (independent of ) with the same covariance matrix
. If and has any other distribution with covari-

ance , then

(5)

If , then equality is achieved iff .
Proof: Let and . Then

and have the same covariance matrix
. We assume the existence of probability density functions

for and denote it by and , respectively. The Gaussian
density functions for and are denoted by and ,
respectively.
We have

where follows from Lemma II.1, follows from Jensen’s in-
equality, follows from

and follows from

The equality in (Jensen’s inequality) is achieved iff

for such that

(6)

If , then the support set of and is , and, thus,
(6) is true for all and in the support set of . Therefore, we
can write for some in the support set of

(7)

and so for all in the support set of as

Therefore, to achieve equality in we need and,
therefore, .

Using Lemma II.2 we examine the properties of the original min-
imax problem.

Theorem II.1: Consider the channel for
, and impose the constraints and .

Then there exists a pair (probability measures on ) which
is a saddle point for the payoff function .
Moreover, the pair is also a saddle point, where

are Gaussian distributions with the same covariances as
, respectively. All saddle points have the same payoff value

If , , then all saddle points are of the form
, where the saddle-point distribution is Gaussian and

is unique.
Proof: We first argue that the set of all probability measures

having covariance matrices in is convex. If are two prob-
ability measures with covariances , then the covari-
ance of , , is also in , by the convexity
of . Thus, is convex. The same argument is true for the noise
probability measure.
Themutual information is concave in and

convex in [1], and the constraint sets on the probability measures are
closed, convex, and bounded. Hence, using the fundamental theorem of
game theory [19], we know that there exists a saddle point .
Let be Gaussian random vectors in having the same co-
variances as , respectively. Furthermore, let be
random vectors in having probability measures , respec-
tively. Then

(8)
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where the inequality follows from the fact that the Gaussian distribu-
tion maximizes the entropy for a given covariance (see [1, Cha. 9]).
Similarly, from Lemma II.2 we have

(9)

for any distribution on , where , and is the
covariance matrix of . Hence, we have shown that

(10)

But, as we know that is a saddle point, we have the following
double inequality:

(11)

and, hence, we have

(12)

Thus, is also a saddle point. This also shows an interchanga-
bility property, i.e., if and are saddle points
then and are also saddle points.
Let be one of the Gaussian noise saddle points. If

then, by the concavity of the mutual information,
we observe

(13)

where , , . Hence

where and
. If then and the entropy

is strictly concave in and so we have .
Therefore, we have

(14)

where is the characteristic function of , and
. Hence, as is nonzero for all we conclude

that , and that the is unique.

It is well known from convex analysis [20] that the set of minimizing
arguments for a convex function is a convex set. In the next result, we
use this to show the set of worst noise distributions is a convex set.

Corollary II.1: Let have the Gaussian input saddle-
point distribution, then the set of worst noise distributions

is a convex set.

Proof: From Theorem II.1, we already know that the saddle
points are of the form , where is unique. Let

and be two saddle points, and .
Then

(15)

where , , ,
and is the value of the game as defined in Theorem II.1.The

above equation is due to the convexity of with
[1]. Thus, the inequality in (15) is satisfied with equality. Hence,

is also a saddle point and, therefore, is
a convex set.Moreover, this also implies that the set of worst covariance
matrices

is a convex set.

We have shown that the saddle points are of the form , and
that are also saddle points, where is Gaussian with
the same covariance as . We can make the following observation on
the noise saddle-point distributions .
Let the , and the eigendecomposition of be

, where . Hence, we
can write

(16)

where are of dimension , respectively. The vectors
are defined similarly. The following proposition has

been contributed by A. Lapidoth.

Proposition II.1: The noise saddle-point distribution is such that
has a full-rank Gaussian distribution where

Note: Thismeans that the estimation error of the best linear estimate
of from is full-rank Gaussian.

Proof: Let , where has the Gaussian
input saddle-point distribution (see Theorem II.1). We define

and the notation from (16) is used. If is not full-rank, i.e.,
, then almost surely (a.s), and a.s. Let

then we have the following:

(17)
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where is due to Lemma II.2. Moreover, as ,
using Lemma II.2 we know that equality is achieved iff is
Gaussian. Now, to show , we use the determinant relationship of
blockmatrices using the Schur complement (defined as )
[21]

(18)

Using (18) and

(19)

we obtain,

(20)

which completes the proof for in (17). Therefore, equality is
achieved in (17) iff has a full-rank Gaussian distribution.

Now, this does not completely answer the question of whether
all saddle points to this problem are Gaussian. The problem arises
primarily because the mutual information is not necessarily a strictly
convex function of and, therefore, the noise saddle-point distri-
bution need not be unique. However, using Theorem II.1, which
shows the existence of Gaussian saddle points, and Proposition II.1
we believe that it is worthwhile to focus our attention on the Gaussian
mutual information game defined as follows.
The Gaussian mutual information game is defined with payoff

(21)

where we have constrained and to be Gaussian with co-
variances and . Note that all saddle points have
the same value and hence the Gaussian saddle points yield the min-
imax rate. Later, we will examine a sufficient condition under which
the saddle point is indeed unique.
Note that as all saddle-point covariances are characterized by

, . For example, if the input covariance constraint
is an average power constraint, must water-fill all the covariances
in . From Corollary II.1, if the noise player chooses to use a mixture
of covariances in it does not gain, since the signal covariance

is already water-filling any convex combination of .
Moreover, the noise cannot further reduce the mutual information by
using any other distribution in . In [22], [23], a problem with vector
(parallel channels) inputs and outputs with power constraints on the
signal and noise was considered. In our problem, the transmitter does
not know the noise covariance matrix and cannot use this information
to form parallel channels. Moreover, the constraints on the processes
are more general than power constraints (or trace constraints on the
covariance matrix).

Next we examine the properties of the function . In par-
ticular, we show that is convex in and concave in
.

Lemma II.3: The function is convex in , with
strict convexity if .

Proof: Consider and let , and let
be independent of and be distributed as

w.p.

w.p.
(22)

where . Let , (mutually
independent and independent of ), and let us define

if
if .

(23)

Consider the two expansions

(24)

Now, since and , we have

(25)

However,

(26)

From Lemma II.2, we have

(27)

where and . Using (25)–(27)
we have

(28)

which gives the desired result. Note that if , the inequality in
(27) is strict, by Lemma II.2, implying strict convexity.

The following lemma [24] has an information-theoretic proof in [25].

Lemma II.4: If , the function is strictly con-
cave in .

We now prove sufficient conditions under which the saddle point to
the mutual information game is unique.

Lemma II.5: If there exists a saddle point of ,
such that , then the saddle point for the mutual infor-
mation game is unique and Gaussian with covariances , re-
spectively.

Proof: From Lemma II.2

and as , equality is achieved iff . Now, let
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Now, since is strictly convex for (from Lemma
II.3), we see that the above minimization has a unique minimum. Thus,

is unique and Gaussian.

This result also helps usmake observations on the set of noise saddle-
point distributions for the case when is not strictly positive-definite.
Here we use the notation of Proposition II.1 and (17). If

, using the partition defined in (16), then we observe that
Using Lemma II.5 on we see that for the

noise saddle-point distribution, has to be Gaussian with
a unique covariance. Therefore, we can observe that the saddle-point
distributions are such that the Schur complement of the noise covari-
ance matrix, projected onto the signal covariance eigendirections, is a
constant. More precisely, the set of noise saddle-point distributions is
convex and such that the has a full-rank Gaussian distribu-
tion with a covariance
which is constant over the set.
We know [3] that for average signal and noise power, the pair

is a saddle point. The result in Lemma II.5 shows that
the saddle point is unique [10]. In the next section, we find the worst
additive noise for a banded covariance constraint.

III. BANDED COVARIANCE CONSTRAINT

In this section, we constrain the noise distribution to have a banded
covariance matrix. Here we assume that we know the noise covariance
lags up to the th lag as given by

for all (29)

The noise is assumed to have zero mean. Now, as the transmitter knows
only partial information about the noise spectrum, the question is what
should be the input spectrum solving the mutual information game
defined in (2). In this section, we consider noise distributions

where

and

specifies the constraints on the correlation lags. Let the covariance
matrix be the maximum entropy covariance in (specified by
Burg’s theorem [2]). The maximum entropy noise is a Gauss–Markov
process with covariance lags satisfying the Yule–Walker equations [1,
pp. 274–277]. Clearly, we can use a signal design which water-fills the
eigenvalues of the maximum-entropy extension . Let us define this
input covariance matrix to be .
We now show that the maximum-entropy extension is the worst

additive noise when we have

(30)

for appropriate , which is true if the input power is high enough so
that for all , , where water-fills . Now

, where are the eigenvalues of . Thus, the
minimax problem becomes

(31)

But is specified in (29), so the maximum in (31)
is achieved by maximizing . However, for this
condition, we need the power to be large. We examine the implica-
tion of this high-power requirement. Notice that we need
for (30) to be true. Therefore, we need for the naive

high-power requirement. This might require a power growing linearly
with block size. In Theorem III.1, we show that this requirement is too
pessimistic and that the worst additive noise is the maximum-entropy
noise for a bounded input power requirement. To show this, we recall
two useful facts.

Fact III.1: , for .

Fact III.2: For the maximum-entropy completion of the noise spec-
ified in (29), the covariance matrix satisfies , for

as shown, for example in [1].

Now, using these facts we will show that the maximal-entropy ex-
tension of the noise and the corresponding signal water-filling
covariance matrix do, indeed, form a saddle point for the game
defined in (2) for sufficiently high input power.

Theorem III.1: Let for and let
be a noise process satisfying the constraints given in (29). Let
satisfy the expected power constraint . If , we have

(32)

for all where ,
, is the maximum-entropy extension

of the noise, and is the corresponding water-filling signal co-
variance matrix.

Proof: The first inequality is easy to show from the water-filling
argument. For the second inequality, we again use Lemma II.2 to reduce
consideration to only Gaussian noise processes. Therefore, the problem
reduces to

such that

for all (33)

This is again a convex minimization problem over a convex set and as
, is a strictly convex functional (Lemma

II.3) and hence it has a unique solution [26]. It remains to show that
satisfies the necessary and sufficient conditions for optimality

[26]. Setting up the Lagrangian we have

(34)

where specifies the constraints
on the correlation lags. Now differentiating with respect to and
using Fact III.1, we obtain

(35)

where is a banded matrix such that for . Note
that, from Fact III.2, we have for . Hence,
it is clear that satisfies the necessary and sufficient conditions for
optimality, since for some constant . This is true as

is the water-filling solution to . Clearly, from this it follows
that is the minimizing solution. Note that from Lemma III.5, as

, this constitutes a unique saddle point to the problem.

To seewhat the power requirement is for and Theorem III.1
to hold, we see that the power should be large enough so that we can
“completely” water-fill the maximum-entropy extension. The power
needed for this is bounded, as we now argue. For the maximum-entropy
completion, the noise covariance matrix is Toepltiz [1] and, therefore,
asymptotically the density of the eigenvalues on the real line tends to
the power spectrum of the maximum entropy stochastic process [1].
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Hence, the condition for the power spectral density of the input process
for “completely” water-filling the maximum-entropy process is that

where , the maximum entropy noise spec-
tral density is denoted by

where , satisfy the Yule–Walker equations [1,
pp. 274–277]. If the maximum entropy process is stable (i.e.,
the noise spectral density does not have poles on the unit circle)
then the input power needed for the above condition is finite, as

. If the banded constraint is not
degenerate then the Yule–Walker equations are not degenerate, i.e.,
we do not have a completely predictable process. Hence, the max-
imum-entropy completion (for the given banded constraint) cannot
be unstable (or critically stable), completing the argument. Now, as
we have chosen , we have a strictly convex minimization
problem for and we establish the result.

Example: This example shows how the maximum entropy noise
and worst additive noise might differ. Let and
. Thus,

(36)

and maximum-entropy completion is

(37)

where , , are the eigenvalues of
and are the associated eigenvectors. If the power is

large enough to water-fill (i.e., ), then the condi-
tions needed for Theorem III.1 are satisfied and the maximum-entropy
completion is indeed the worst noise.
We now consider the power constraint, . Here the

input power is insufficient to water-fill the maximum-entropy comple-
tion. We find the saddle point by numerically solving for

The covariance of the worst additive noise is then given by

(38)

where , , are the eigenvalues of
and are the associated eigenvectors. The optimal trans-

mitter covariance matrix is of rank , given by

(39)

and

nats (40)

Thus, for the this low signal power example, the worst additive noise
is , which differs from the maximum-entropy
noise
Note that if the transmitter uses the minimax distribution ,

but nature deviates from the noise distribution by using the
maximum-entropy noise , the transmission rate increases
to

nats.

Thus, deviation by the noise player is strictly punished, and the max-
imum-entropy noise is seen to be strictly suboptimal for low power.
Note that when we have low signal power, the optimal does not

have full rank. In general (for a larger number of dimensions ), there
could be a convex set of noise covariance matrices whose projections
on the range space of are identical but could be different in the null
space of (still satisfying the covariance constraints). Thus, the set
of worst noise covariance matrices is convex and looks the same in the
range space of (or “below the water line”).

IV. DECODING SCHEME

It is difficult for the receiver to form amaximum-likelihood detection
scheme for all noise distributions. Therefore, we propose using a sim-
pler detection scheme based on a Gaussian metric and the second-order
moments. However, as this is not the optimal metric, it falls into the
category of mismatched decoding [11], and it is not obvious that the
rate is achievable using such a mismatched decoding
scheme.
In this section, we show that the rate is achievable

using a random Gaussian codebook and a Gaussian metric under
some conditions on the noise process. In [11], [23], it was shown
that is achievable using a Gaussian codebook
and a minimum Euclidean distance decoding metric. This result was
extended to the vector single-user channel where the transmitter knows
the noise covariance matrix and hence can form parallel channels [11],
[23]. In our case, we do not assume that the transmitter knows the
noise covariance but show that if the receiver knows , then the rate

is achievable.
The coding game is played as follows. The transmitter knows the

family but not the specific covariance or the distribution.
The transmitter chooses a distribution and i.i.d. code-
words drawn according to . The transmitter is also allowed to
choose a random codebook, where the codebook is known to the re-
ceiver.The receiver is assumed toknow butnot thenoisedistribution.
The receiver chooses a given decoding rule based on the knowledge of
thenoise covariance and the transmitter codebook.Thenoise can choose
any distribution satisfying the given covariance constraints

and some regularity conditions ( and below) on
the noise process. We find the highest achievable rate for which the
probability of error averaged over the random codebooks goes to zero.
Let us define as

(41)
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Define and to be jointly -typical if we have

(42)

Our detection rule is that we declare to be decoded if it is the
only codeword which is jointly -typical with the received . Note
that the detection rule is equivalent to a Gaussian decoding metric with
a threshold detection scheme where an error is declared if there are
more than one codewords below the threshold. This can be seen by
rewriting (42) as

(43)

The conditions that we impose on the noise process are

We begin by stating two lemmas which are proved in the Appendix.
Lemma IV.2 requires the use of conditions and on the noise
process.

Lemma IV.1: If and is independent of ,
then

(44)

Lemma IV.2: If and is independent of , and
, and the noise satisfies and , then we

have

(45)

We define as the probability of error over a block of samples
averaged over transmitter codebooks, i.e.,

We will show below that for rates below

there exist codes for which the probability of error goes to zero as
.

Theorem IV.1: Let the channel , where ,
, and satisfies conditions and . Suppose the trans-

mitter knows the family but not the actual covariance .
Let the receiver know the covariance of , but not the distribu-
tion. Then, there exists a sequence of randomly drawn
codes with decoding rule given in (42) such that the probability of error

.
Proof: Let , , be independent code-

words chosen from a Gaussian distribution with covariance . Let
us define the event are jointly -typical , where
typicality is defined in (42). As the index of the codewords is assumed
to be chosen from a uniform distribution, we can assume without loss
of generality (w.l.o.g.) that was the transmitted
codeword. Hence, we can write the probability of error
using the union bound as

(46)

We can write for as

(47)

where follows from the Chernoff bound, using and

follows by expanding ; uses Lemma IV,1;
and uses the definition of . Therefore, using (46) and (47) we have

(48)

where follows from Lemma IV.2. Therefore,

if .

This result needs to be interpretedwith caution, as it is proved that the
average error probability, averaged over randomly chosen codebooks,
goes to zero. This does not show that a single codebook will suffice
for all noise distributions in . Randomization may protect against
noise distributions which are designed for specific codebooks. Given



3080 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001

this caveat, we have shown that despite having a mismatched decoder
(which treats the noise as Gaussian), we can transmit information reli-
ably at rate

using a codebook consisting of independently drawn Gaussian code-
words.
Note that we have not used the “worst” covariance for the

decoding rule. It seems difficult to show whether the rate
is achievable using the worst covariance for decoding

rather than assuming that the noise covariance is known at the
decoder. It can be shown that the equivalent of Lemma IV.1 can
be shown for as well (and the proof is almost identical to that
in the Appendix). However, to show the equivalent of Lemma IV.2
may be harder. An encouraging sign is an adaptation of the result in
[13, Lemma 6.10, pp. 212–214] (in the context of a convex class of
compound channels), where it is shown that

where corresponds to the output of the channel that achieves the
saddle point in the mutual information game. Using a similar setup, in
our case this translates to

We can perhaps use this in order to prove a coding theorem using
for the decoding. However, this is just a conjecture, we have not proved
such a result and it is not clear whether it is true.

V. CONCLUDING REMARKS

The existence of Gaussian saddle points in the mutual information
game (under covariance constraints on signal and noise) implies the ro-
bustness of Gaussian codebooks. The problem of robust signal design
reduces to water filling on the worst noise processes subject to covari-
ance constraints. We show that for high signal power, the worst noise
with a banded covariance constraint is the maximum entropy noise.
However, the maximum entropy noise is not the worst noise for low
signal powers. Hence, robust signal design depends on the noise con-
straints as well as the available signal power.

APPENDIX

Lemma A.1: If

(49)

Proof: We can always write , where and
is an matrix. Here denotes the rank of . Therefore, we
have

(50)

where follows from and uses thematrix inversion
lemma and the facts , [27].

Lemma IV.1: If and is independent of ,
where has an arbitrary distribution, then we have

(51)

Proof of Lemma IV.1:

(52)

where follows from the fact that and are independent,
follows from Lemma A.1.

Lemma IV.2: If and is independent of ,
and , then we have

(53)

Proof of Lemma IV.2:

(54)

where follows from the Chernoff bound, is the Chernoff param-
eter, follows from the independence of and , and fol-
lows from Lemma A.1. Let us define

(55)
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Hence, we have the right-hand side of (54) given by .
We can rewrite as

(56)

where .

(57)

where in we have used for and is
due to

Let

If then from and we have for all
. If we evaluate when and denote

it by we have

(58)

where follows because and follows by choosing .
The result follows by using (54), (58) , and .
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