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Problem 1 (The world of Ideals). We want to derive a relation between X (¢/27/) and the
DTFT of the downsampled signal, i.e X4(e2™). We do this in two steps.
Step 1 : Consider first the signal
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Note that the complex exponentials are periodic with period 4, so it is sufficient to check
that the above relation holds for n = 0,1, 2, 3.
Using the frequency shift property of the DTFT, we get
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Step 2 : Removing all zeros introduced in x,[n|, we get z4[n]. Hence,
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Where (a) follows from the fact that z,[m] = 0, for m # integer multiple of 4.
So overall, we obtained



Now, we want to derive a relationship between X4(e’?™f) and the DTFT of the upsampled

signal, i.e X, (e/2"/).
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The cascade of downsampling and upsampling operations yields:
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The signals are drawn in figures 1-5 at the end of the solutions.

Problem 2 (Fractional Delay).

a) The system represents a ”fractional” delay. Hence,

yln

1.e.

y[n] is "delayed” by d time units.

| =sin (27 fo(n — d) + ¢o)

The simplest way to compute y[n] is to

transform into the Fourier domain, to multiply, and to transform back.

b) We have h[n] = d[n — d].

Since this impulse response is absolutely summable, the

system is BIBO stable. If d > 0 then the system is causal, otherwise it is not.

c¢) If d is not an integer, then we get by direct integration :

hin]

1

_ 2 o—i2mnfd g2 fn
1
2
_ 1 €j27r(n—d)|% )
2jm(n —d) -3
= sinc(n —d)

In this case the impulse response is not absolutely summable, so the system is not
BIBO stable. The system is never causal.
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The difference equation is :

yln] ~ gyl — 1]+ Jyln — 3] = aln] — zaln — 1]
2) Note that the poles are located on the circles |z| = 1 and |z| = \/LE See Fig. 6.
We can associate three regions with H(z).
ROC; : |z] > \% See Fig. 7.
ROC; : |z| < 3. See Fig 8.
ROC; : 1 < |z] < \% See Fig 9.
ROC; includes the unit circle, so it is a stable system. Moreover, ROC; extends
outward from |z| = Lz including co. Hence it is a causal system.
On the other hand ROC, does not include the unit circle, hence it is not stable. Since
ROC; is the inside of a circle, it cannot be causal either. Similarly, ROCj is neither
stable, nor causal.

3) The Fourier transform converges in ROCy, see Fig. 10.
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Hence, the partial fraction expansion gives :
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Since H(z) is causal inside ROCy, the inverse is given by :
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You need further to expand the second fraction with partial fraction expansion.
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Using the previous partial fraction expansion, we see that the first fraction of H(z)

is causal, the other two fractions are anti-causal. Hence,
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We want to find G(z) such that H(z)G(z) =1
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See Fig. 11. We found that H(z) is both stable and causal inside ROC;.
Similarly we can deduce that G(z) is both causal and stable for the region
ROCq: |z] > % Now, we also need to ensure that ROC;NROCg # &, which

holds in this case. The DTFT is plotted in Fig. 12.



Figure 6: Pole-zero plot
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Figure 8: ROC, : |2| < 3




Figure 9: ROC3 : 5 < |2] < ﬁ

Figure 10: Magnitude response of |H (e/2™/)|



Figure 11: Pole-zero plot with ROC for G(z)

Figure 12: Magnitude response for G(z)



Problem 4. (FIR Approximation of the Hilbert Filter/Oppenheim Problems 7.32/7.33/7.52)
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Similarly, by considering the fact tha hin] =0 for n < 0 and n > M, and the
fact that h[n] = h[M-n] for n =0,..., 21, we can derive:
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The Hilbert transform is given by:
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Hence, the delayed Hilbert transform with generalized linear phase can be de-
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The magnitude and phase responses are plotted in Fig. 13, and Fig. 14 respec-
tively.

Note that the phase response has a 7 radian phase shift at f = 0. This is
because the above Hilbert filter requires a zero at z = 1. This implies that the
filter coefficients sum up to 0. Hence the filter should be antisymmetric. So we
could only use hys[n] to approximate hg[n].
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We observe that hy[n] is symmetric around n = d. Moreover, from part (ii) we
also know that hus[n] can be used to approximate hq[n| as a causal, FIR filter

with generalized linear phase. Hence d = % since X is the axis of symmetry of

2 2
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From Parseval, we have
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We know that due to the windowing operation h[n] = 0 for n < 0 and n > M.
As aresult to minimize €2, the best thing we could do is to select h[n] = hy[n] for
0 <n < M. Therefore the optimal window which minimizes €? is the rectangular
window, i.e :
1 0<n<<M
utr] = {
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Problem 5. Note that the solution is given in terms of the ”"w” variable notation for
DTFT!
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Now we only need to compute a.
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