
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 15 Information Theory and Coding
Solution 7 November 9, 2010, SG1 – 15:15-17:00

Problem 1. (a) pk(x) ≤ p̂(x). Therefore, 1 =
∑

x pk(x) ≤
∑

x p̂(x) = A. Also p̂(x) ≤ 1.
Therefore, A =

∑

x p̂(x) ≤
∑

x 1 = K.

(b) Assume that the code is in a D-ary alphabet and the logarithm is with respect to
base D. Then,

∑

x

D−l(x) =
∑

x

D−⌈− logD p̂(x)+logD A⌉ ≤
∑

x

DlogD p̂(x)−logD A =

∑

x p̂(x)

A
= 1.

As l(x) satisfies Kraft inequality, there exists a prefix-free code for X with codeword
lengths equal to l(x).

(c) As it is a prefix-free code, it satisfies L̄k ≥ Hk. For the upper bound,

L̄k =
∑

x

pk(x)l(x)

=
∑

x

pk(x)⌈− logD p̂(x)
︸︷︷︸

≥p(x)

+ logD A⌉

≤
∑

x

pk(x)⌈− logD p(x) + logD A⌉

≤
∑

x

pk(x)(− logD p(x) + logD A + 1)

= Hk + logD A + 1.

(d) For each symbol x, we choose the binary Huffman code with the shortest codeword
length, that is, l(x) = mink lk(x) and we add ⌈log2 K⌉ bits to the codeword to de-
scribe which of the K Huffman codes we used. As the distribution of X is one of
the K different distributions p1, · · · , pK , the shortest Huffman code will be the one
corresponding to the the actual distribution of X. Therefore the chosen codeword
will use no more than H(X) + 1 bits/symbol on average. As we add ⌈log2 K⌉ bits to
the codeword to describe which of the K Huffman codes we used, the total average
length of the codeword can be up to H(X) + ⌈log2 K⌉ + 1.

Problem 2. Refer Handout 13 - Notes by Prof. Emre Telatar on the Lempel-Ziv Algorithm.

Problem 3. Let s(m) = 0 + 1 + · · · + (m − 1) = m(m − 1)/2.

(a) Suppose we have a string of length n = s(m). Then, we can certainly parse it into
m words of lengths 0, 1, · · · , (m − 1), and since these words have different lengths,
this is distinct parsing. As a parsing with the maximal number of distinct words will
have at least as many words as this particular parsing, we conclude that whenever
n = m(m − 1)/2, c ≥ m.

(b) An all zero string of length s(m) can be parsed into at most m words. In this case,
distinct words have distinct lengths.

0 5 10 15 20
−6

−4

−2

0

2

4

6

n

a n

(a) Problem 4(a)

0 5 10 15 20
−0.5

0

0.5

1

1.5

2

2.5

3

a n

n

(b) Problem 4(b)

(c) Given any n, we can find m such that s(m − 1) ≤ n < s(m). A string with n letters
can be parsed into (m − 1) distinct words by parsing its initial segment of s(m − 1)
letters with the above procedure, and concatenating the leftover letters to the last
word. Thus, if a string an be parsed in c = (m − 1) distinct words, then n < s(m),
and in particular, n < s(c + 1) = c(c + 1)/2.

Problem 4. (a) Let bn = inf{ak : k ≥ n}. Then

bn = inf

{

(−1)n (n + 5)

n
, (−1)n (n + 6)

n + 1
, · · ·

}

=

{

− (n+5)
n

for n odd

− (n+6)
(n+1)

for n even

Therefore lim inf an = −1. Similarly, lim sup an = 1.

(b) It can be seen that the limit points of {an} are 0, 1, and e. Similar to (a), it can be
shown that lim inf an = 0 and lim sup an = e.

The figures above give a graphical view of the lim sup, lim inf and the other limit points
in this problem.

Problem 5.

Yn =

(
n∏

i=1

Xi

) 1

n

=
(

2log
2(
∏

n

i=1
Xi)
) 1

n

= 2(
1

n

∑
n

i=1
log

2
Xi)

→ 2E[log
2

X] as n → ∞ with probability one.

Now, E[log2 X] = 1
2
log2 1 + 1

4
log2 2 + 1

4
log2 3 = log2 61/4. Therefore, Y → 61/4 as n → ∞

with probability one.

Problem 6. Since the probability of going to any of the other valid squares from a given
square is equal, the stationary distribution is given by µi = Ei/E, where Ei is the number
of valid moves from square i and E =

∑9
i=1 Ei. From the 3 × 3 chessboard, it can be seen

2

that each of the corners have 3 valid moves for the king, that is, E1 = E3 = E7 = E9 = 3,
each of the edges have 5 valid moves for the king, that is, E2 = E4 = E6 = E8 = 5, and
the center square has 8 valid moves for the king, that is, E5 = 8. Therefore, E = 40, and
so µ1 = µ3 = µ7 = µ9 = 3/40, µ2 = µ4 = µ6 = µ8 = 5/40, and µ5 = 8/40. As each of the
valid moves are chosen with equal probability, H(X2|X1 = i) = log2 3 bits for i = 1, 3, 7, 9,
H(X2|X1 = i) = log2 5 bits for i = 2, 4, 6, 8, and H(X2|X1 = i) = log2 3 bits for i = 5.
Therefore, the entropy rate is

H =
9∑

i=1

µiH(X2|X1 = i)

= 0.3 log2 3 + 0.5 log2 5 + 0.2 log2 8

= 2.2365 bits/move.

Entropy rates of a rook and an even bishop are easier to compute as they always have the
same number of squares to move to from any valid position on the chessboard. For a rook,
there are always 4 valid moves from any square, and so a rook’s stationary distribution can
be shown to be uniformly distributed over all the squares of the chessboard. Therefore, its
entropy rate can be easily computed as log2 4 = 2 bits/move. For an even bishop, there are
always 2 valid moves from any valid square, and so an even bishop’s stationary distribution
can be shown to be uniformly distributed over all its valid squares, which are 2, 4, 6, and
8. Its entropy rate is log2 2 = 1 bit/move.

3

