ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
 School of Computer and Communication Sciences

Handout 15
Information Theory and Coding
Solution 7
November 9, 2010, SG1 - 15:15-17:00

Problem 1. (a) $p_{k}(x) \leq \hat{p}(x)$. Therefore, $1=\sum_{x} p_{k}(x) \leq \sum_{x} \hat{p}(x)=A$. Also $\hat{p}(x) \leq 1$. Therefore, $A=\sum_{x} \hat{p}(x) \leq \sum_{x} 1=K$.
(b) Assume that the code is in a D-ary alphabet and the logarithm is with respect to base D. Then,

$$
\sum_{x} D^{-l(x)}=\sum_{x} D^{-\left\lceil-\log _{D} \hat{p}(x)+\log _{D} A\right\rceil} \leq \sum_{x} D^{\log _{D} \hat{p}(x)-\log _{D} A}=\frac{\sum_{x} \hat{p}(x)}{A}=1
$$

As $l(x)$ satisfies Kraft inequality, there exists a prefix-free code for X with codeword lengths equal to $l(x)$.
(c) As it is a prefix-free code, it satisfies $\bar{L}_{k} \geq H_{k}$. For the upper bound,

$$
\begin{aligned}
\bar{L}_{k} & =\sum_{x} p_{k}(x) l(x) \\
& =\sum_{x} p_{k}(x)\lceil-\log _{D} \underbrace{\hat{p}(x)}_{\geq p(x)}+\log _{D} A\rceil \\
& \leq \sum_{x} p_{k}(x)\left\lceil-\log _{D} p(x)+\log _{D} A\right\rceil \\
& \leq \sum_{x} p_{k}(x)\left(-\log _{D} p(x)+\log _{D} A+1\right) \\
& =H_{k}+\log _{D} A+1
\end{aligned}
$$

(d) For each symbol x, we choose the binary Huffman code with the shortest codeword length, that is, $l(x)=\min _{k} l_{k}(x)$ and we add $\left\lceil\log _{2} K\right\rceil$ bits to the codeword to describe which of the K Huffman codes we used. As the distribution of X is one of the K different distributions p_{1}, \cdots, p_{K}, the shortest Huffman code will be the one corresponding to the the actual distribution of X. Therefore the chosen codeword will use no more than $H(X)+1$ bits/symbol on average. As we add $\left\lceil\log _{2} K\right\rceil$ bits to the codeword to describe which of the K Huffman codes we used, the total average length of the codeword can be up to $H(X)+\left\lceil\log _{2} K\right\rceil+1$.

Problem 2. Refer Handout 13 - Notes by Prof. Emre Telatar on the Lempel-Ziv Algorithm.
Problem 3. Let $s(m)=0+1+\cdots+(m-1)=m(m-1) / 2$.
(a) Suppose we have a string of length $n=s(m)$. Then, we can certainly parse it into m words of lengths $0,1, \cdots,(m-1)$, and since these words have different lengths, this is distinct parsing. As a parsing with the maximal number of distinct words will have at least as many words as this particular parsing, we conclude that whenever $n=m(m-1) / 2, c \geq m$.
(b) An all zero string of length $s(m)$ can be parsed into at most m words. In this case, distinct words have distinct lengths.

(a) Problem 4(a)

(b) Problem 4(b)
(c) Given any n, we can find m such that $s(m-1) \leq n<s(m)$. A string with n letters can be parsed into $(m-1)$ distinct words by parsing its initial segment of $s(m-1)$ letters with the above procedure, and concatenating the leftover letters to the last word. Thus, if a string an be parsed in $c=(m-1)$ distinct words, then $n<s(m)$, and in particular, $n<s(c+1)=c(c+1) / 2$.

Problem 4. (a) Let $b_{n}=\inf \left\{a_{k}: k \geq n\right\}$. Then

$$
\begin{aligned}
b_{n} & =\inf \left\{(-1)^{n} \frac{(n+5)}{n},(-1)^{n} \frac{(n+6)}{n+1}, \cdots\right\} \\
& = \begin{cases}-\frac{(n+5)}{n} & \text { for } n \text { odd } \\
-\frac{(n+6)}{(n+1)} & \text { for } n \text { even }\end{cases}
\end{aligned}
$$

Therefore $\lim \inf a_{n}=-1$. Similarly, $\lim \sup a_{n}=1$.
(b) It can be seen that the limit points of $\left\{a_{n}\right\}$ are 0,1 , and e. Similar to (a), it can be shown that $\lim \inf a_{n}=0$ and $\limsup a_{n}=e$.
The figures above give a graphical view of the lim sup, lim inf and the other limit points in this problem.

Problem 5.

$$
\begin{aligned}
Y_{n} & =\left(\prod_{i=1}^{n} X_{i}\right)^{\frac{1}{n}} \\
& =\left(2^{\log _{2}\left(\prod_{i=1}^{n} X_{i}\right)}\right)^{\frac{1}{n}} \\
& =2^{\left(\frac{1}{n} \sum_{i=1}^{n} \log _{2} X_{i}\right)} \\
& \rightarrow 2^{E\left[\log _{2} X\right]} \quad \text { as } n \rightarrow \infty \text { with probability one. }
\end{aligned}
$$

Now, $E\left[\log _{2} X\right]=\frac{1}{2} \log _{2} 1+\frac{1}{4} \log _{2} 2+\frac{1}{4} \log _{2} 3=\log _{2} 6^{1 / 4}$. Therefore, $Y \rightarrow 6^{1 / 4}$ as $n \rightarrow \infty$ with probability one.

Problem 6. Since the probability of going to any of the other valid squares from a given square is equal, the stationary distribution is given by $\mu_{i}=E_{i} / E$, where E_{i} is the number of valid moves from square i and $E=\sum_{i=1}^{9} E_{i}$. From the 3×3 chessboard, it can be seen
that each of the corners have 3 valid moves for the king, that is, $E_{1}=E_{3}=E_{7}=E_{9}=3$, each of the edges have 5 valid moves for the king, that is, $E_{2}=E_{4}=E_{6}=E_{8}=5$, and the center square has 8 valid moves for the king, that is, $E_{5}=8$. Therefore, $E=40$, and so $\mu_{1}=\mu_{3}=\mu_{7}=\mu_{9}=3 / 40, \mu_{2}=\mu_{4}=\mu_{6}=\mu_{8}=5 / 40$, and $\mu_{5}=8 / 40$. As each of the valid moves are chosen with equal probability, $H\left(X_{2} \mid X_{1}=i\right)=\log _{2} 3$ bits for $i=1,3,7,9$, $H\left(X_{2} \mid X_{1}=i\right)=\log _{2} 5$ bits for $i=2,4,6,8$, and $H\left(X_{2} \mid X_{1}=i\right)=\log _{2} 3$ bits for $i=5$. Therefore, the entropy rate is

$$
\begin{aligned}
\mathcal{H} & =\sum_{i=1}^{9} \mu_{i} H\left(X_{2} \mid X_{1}=i\right) \\
& =0.3 \log _{2} 3+0.5 \log _{2} 5+0.2 \log _{2} 8 \\
& =2.2365 \mathrm{bits} / \mathrm{move}
\end{aligned}
$$

Entropy rates of a rook and an even bishop are easier to compute as they always have the same number of squares to move to from any valid position on the chessboard. For a rook, there are always 4 valid moves from any square, and so a rook's stationary distribution can be shown to be uniformly distributed over all the squares of the chessboard. Therefore, its entropy rate can be easily computed as $\log _{2} 4=2$ bits/move. For an even bishop, there are always 2 valid moves from any valid square, and so an even bishop's stationary distribution can be shown to be uniformly distributed over all its valid squares, which are $2,4,6$, and 8. Its entropy rate is $\log _{2} 2=1$ bit/move.

