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Problem 1. (a) Let yn = p(x1, · · · , xn)
1
n . Since X1, X2, · · · is an i.i.d. sequence, we

have p(x1, · · · , xn) =
∏n

i=1 p(xi) and

log yn =
1

n
p(x1, · · · , xn)

=
1

n
log

n∏
i=1

p(xi)

=
1

n

n∑
i=1

log p(xi)

in prob.→ E(log p(x)) = −H(X),

where the last statement is due to the fact that the average of n i.i.d. samples of a
random variable converges in probability to the expectation of the random variable.
As a result, since log yn converges in probability to −H(X), yn itself converges in
probability to 2−H(X).

(b) If we go along the same lines as part (a), assuming yn = (
∏n

i=1 f(xi))
1
n we obtain

log yn =
1

n

n∑
i=1

log f(xi)→ E(log f(x)).

Thus yn → 2E(logf(X)). The solustion for the second part is exactly similar with the
same final answer(note that limn→∞

n
n+log n

= 1).

(c) Let g(u) = u
1
n . Firstly we have g′′(u) = 1

n
( 1

n
− 1)(u)

1
n
−2 ≤ 0 . As a result g is a

concave function. Thus given a random variable Y , by Jensen’s inequality we have

E(g(Y )) ≤ g(E(Y )).

Now if we take Y =
∏n

i=1 f(xi), we have

E(g(Y )) = E((
n∏

i=1

f(xi))
1
n )

≤ g(E(Y ))

= (E(
n∏

i=1

f(xi)))
1
n

= (
n∏

i=1

E(f(xi)))
1
n

= E(f(X)).

Note that this inequality holds for any n ∈ N and we have not considered the con-
vergence issues.



Problem 2. (a) It is straightforward.

(b) It’s H(X2|X1).

(c) Note that the process is a (first-order) Markov chain since the the probability of
being in each state (building) for the next time only depends on the current state
(building). The transition matrix for this process would be

P =

IN CO SG
IN
CO
SG

 0 2/3 1/3
2/6 2/6 2/6
1/3 2/3 0

 ,

where Pij is the probability of going to state j given that we are in state i.

(d) The stationary distribution is a vector Π = (ΠIN ΠCO ΠSG) = (p1, p2, p3), where
ΠP = Π.

1

3
p2 +

1

3
p3 = p1

2

3
p1 +

1

3
p2 +

2

3
p3 = p2

1

3
p1 +

1

3
p2 = p3

p1 + p2 + p3 = 1

p2 + p3 = 3p1

2p1 + p2 + 2p3 = 3p2

p1 + p2 = 3p3

p1 + p2 + p3 = 1

⇒ Π =
(

1
4

1
2

1
4

)
.

(e)

H (X) = lim
n→∞

1

n
H (X1...Xn)

(a)
= lim

n→∞

1

n

n∑
i=1

H (Xi|X1...Xi−1)

(b)
= lim

n→∞

1

n

n∑
i=1

H (Xi|Xi−1)

(c)
= lim

n→∞

1

n

n∑
i=1

H (X2|X1)

= lim
n→∞

H (X2|X1)

= H (X2|X1)

where in (a) the joint entropy is expanded using the chain rule, (b) is by using the
property of the Markov chain, and in (c) the stationarity of the process has been
used.

2



H (X) = H (X2|X1) =
∑

x∈{IN,CO,SG}

p (x) H (X2|X1 = x)

where p(x) is the stationary distribution of the process.

H (X2|X1 = IN) = −2

3
log

2

3
− 1

3
log

1

3
= −2

3
+ log 3

H (X2|X1 = CO) = −1

3
log

1

3
− 1

3
log

1

3
− 1

3
log

1

3
= log 3

H (X2|X1 = SG) = −2

3
+ log 3 (similar to IN case)

H (X) = 2
1

4

(
−2

3
+ log 3

)
+

1

2
log 3 = −1

3
+ log 3 ∼= 1.25

(f) The entropy of the process is the entropy of its stationary distribution.

H (X) = 2− 1

4
log

1

1/4
+

1

2
log

1

1/2
= 1.5

The same relationship always holds since

H (X) = H (X2) ≥ H (X2|X1) = H (X) ,

and the inequality holds because conditioning reduces the average entropy.
Remark: Note that it is possible that conditioning on a specific realization of a
random variable decreases the entropy, i.e

H (X) < H (X|Y = y) .

However, conditioning always reduces the average entropy, i.e.

H (X) ≥ H (X|Y ) =
∑
y∈Y

p (y) H (X|Y = y) .

Problem 3. (a) Let I be the set of intermediate nodes (including the root), let N be the
set of nodes except the root and let L be the set of all leaves. For each n ∈ L define
A(n) = {m ∈ N : m is an ancestor of n} and for each m ∈ N define D(m) = {n ∈
L : n is a descendant of m}. We assume each leaf is an ancestor and a descendant
of itself. Then

E[distance to a leaf] =
∑
n∈L

P (n)
∑

m∈A(n)

d(m)

=
∑
m∈N

d(m)
∑

m∈D(m)

P (n) =
∑
m∈N

P (m)d(m).

(b) Consider any leaf node say nj. Consider the unique path in the tree from the leaf
node njto the root. Let us label the nodes, which we encounter along the path to the
root, as n1

j , n
2
j , · · · , nl

jwhere nl
j is the root of the tree. We observe that
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P (nj) =
P (nj)

P (n1
j)

P (n1
j)

P (n2
j)
· · ·

P (nl−1
j )

P (nl
j)

(1)

where P (ni
j) are the probabilities assigned in the usual way to the intermediate nodes.

Also note that P (nl
j) = P (root) = 1. Thus from the definition of Q(n) we can say

that

P (nj) = Q(nj)Q(n1
j) · · ·Q(nl−1

j ) (2)

Let d(n) = log Q(n). We see that log P (nj) is the distance associated with a leaf.
From part (a),

H(leaves) = E[distance to a leaf]

=
∑
n∈N

P (n)d(n)

=
∑
n∈N

P (n) log Q(n)

=
∑
n∈N

P (parent of n)Q(n) log Q(n)

=
∑
n∈N

P (m)
∑

n: n is a child of m

Q(n) log Q(n)

=
∑
m∈I

P (m)Hm′ .

(c) Let us assume that there are K symbols. Remember that for a valid dictionary we
require all the paths in the tree to have atleast one word and prefix free means that
the words should be leaves. Hence from every intermediate node there are K children
and clearly P (child)

P (parent)
= p(k) where p(k) is the probability of the symbol k. As a result

Hn = −
∑

n : n is a child of n′

P (n)

P (n′)
log

P (n)

P (n′)
= −

∑
k

p(k) log p(k) = H

Thus each Hn = H. Thus H(leaves) = H
∑

n∈I P (n) = HE[L].
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