ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
 School of Computer and Communication Sciences

Handout 4

Solution 2

Information Theory and Coding October 5, 2010, SG1-15:15pm-17:00

Problem 1 (Weak Law of Large Numbers).
(a) (Markov's Inequality) Let the probability density function of X be $p_{X}(x)$. As X is non-negative and $a>0$,

$$
E[X]=\underbrace{\int_{0}^{a} x p_{X}(x) d x}_{\geq 0}+\int_{a}^{\infty} \underbrace{x}_{\geq a} p_{X}(x) d x \geq a \int_{a}^{\infty} p_{X}(x) d x=a \operatorname{Pr}\{X \geq a\}
$$

(b) (Chebyshev's Inequality) Set $X=(Y-\mu)^{2}$. Then, $E[X]=E\left[(Y-\mu)^{2}\right]=\sigma^{2}$. Using Markov's inequality,

$$
\operatorname{Pr}\{|Y-\mu| \geq b\}=\operatorname{Pr}\left\{(Y-\mu)^{2} \geq b^{2}\right\}=\operatorname{Pr}\left\{X \geq b^{2}\right\} \leq \frac{E[X]}{b^{2}}=\frac{\sigma^{2}}{b^{2}}
$$

(c) (Weak Law of Large Numbers) As X_{1}, \cdots, X_{n} are IID, $E\left[\bar{X}_{n}\right]=E\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=$ $\frac{1}{n} \sum_{i=1}^{n} E\left[X_{i}\right]=\mu$ and

$$
\begin{aligned}
\operatorname{Var}\left[\bar{X}_{n}\right] & =E\left[\left(\bar{X}_{n}-E\left[\bar{X}_{n}\right]\right)^{2}\right] \\
& =E\left[\left(\bar{X}_{n}-\mu\right)^{2}\right] \\
& =E\left[\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right)^{2}\right] \\
& =\frac{1}{n^{2}} E\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+\sum_{j=1}^{n} \sum_{k=1}^{n}\left(X_{j}-\mu\right)\left(X_{k}-\mu\right)\right] \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \underbrace{E\left[\left(X_{i}-\mu\right)^{2}\right]}_{=\sigma^{2} \text { (identical dist.) }}+\sum_{j=1}^{n} \sum_{k=1}^{n} \underbrace{E\left[\left(X_{j}-\mu\right)\left(X_{k}-\mu\right)\right]}_{=0 \text { (independent) }} \\
& =\frac{\sigma^{2}}{n} .
\end{aligned}
$$

Using Chebyshev's inequality for \bar{X}_{n}, we get

$$
\operatorname{Pr}\left\{\left|\bar{X}_{n}-\mu\right| \geq \epsilon\right\} \leq \frac{\operatorname{Var}\left[\bar{X}_{n}\right]}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}}, \quad \forall \epsilon>0 .
$$

Problem 2 (Jensen's Inequality). When $n=2, E[f(X)]=p_{1} f\left(x_{1}\right)+p_{2} f\left(x_{2}\right) \geq f\left(p_{1} f\left(x_{1}\right)+\right.$ $\left.p_{2} f\left(x_{2}\right)\right)=f(E[X])$, because f is convex. Assume Jensen's inequality is true for $n=k \geq 2$. If we show that it is true for $(k+1)$, we will have proven Jensen's inequality using mathematical induction. Let X take values $x_{1}, \cdots, x_{(k+1)}$ with probabilities $p_{1}, \cdots, p_{(k+1)}$, such
that $\sum_{i=1}^{(k+1)} p_{i}=1$. Let $p_{i}^{\prime}=p_{i} /\left(\sum_{j=1}^{k} p_{j}\right)$ so that $\sum_{i=1}^{k} p_{i}^{\prime}=1$. From our assumption, we know that for $n=k$

$$
E[f(X)] \geq f(E[X]) \Longleftrightarrow \sum_{i=1}^{k} f\left(x_{i}\right) p_{i}^{\prime} \geq f\left(\sum_{i=1}^{k} x_{i} p_{i}^{\prime}\right)
$$

Now, for $n=k+1$

$$
\begin{aligned}
E[f(X)] & =\sum_{i=1}^{k+1} f\left(x_{i}\right) p_{i} \\
& =\underbrace{\sum_{j=1}^{k} p_{j}}_{=\left(1-p_{(k+1)}\right)} \sum_{i=1}^{k} f\left(x_{i}\right) \underbrace{\frac{p_{i}}{\sum_{j=1}^{k} p_{j}}}_{=p_{i}^{\prime}}+f\left(x_{(k+1)}\right) p_{(k+1)} \\
& =\left(1-p_{(k+1)}\right) \underbrace{\sum_{i=1}^{k} f\left(x_{i}\right) p_{i}^{\prime}}_{\geq f\left(\sum_{i=1}^{k} x_{i} p_{i}^{\prime}\right)}+f\left(x_{(k+1)}\right) p_{(k+1)} \\
& \geq\left(1-p_{(k+1)}\right) f\left(\sum_{i=1}^{k} x_{i} p_{i}^{\prime}\right)+f\left(x_{(k+1)}\right) p_{(k+1)} \quad \\
& \geq f\left(\left(1-p_{(k+1)}\right) \sum_{i=1}^{k} x_{i} p_{i}^{\prime}+p_{(k+1)} x_{(k+1)}\right) \\
& =f\left(\sum_{i=1}^{k+1} x_{i} p_{i}\right)=f(E[X]) .
\end{aligned} \quad \text { (by assumption) } \quad \text { (because f is convex) } \quad \text {) }
$$

Problem 3 (Huffman Coding). (i) Given $Y=y_{1}$, the conditional probability distribution of X is

$$
\begin{array}{c|cccccc}
X & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline \operatorname{Pr}\left\{X \mid Y=y_{1}\right\} & 1 / 3 & 1 / 3 & 1 / 12 & 1 / 12 & 1 / 12 & 1 / 12
\end{array}
$$

A possible binary Huffman tree for the above conditional distribution looks like Figure 1. From the tree, the expected codeword length W_{1} of a binary Huffman code for X given $Y=y_{1}$ is $W_{1}=1 / 3+2 / 3+0+4 / 3=7 / 3$ bits.
(ii) Given $Y=y_{2}$, the conditional probability distribution of X is

$$
\begin{array}{c|cccccc}
X & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline \operatorname{Pr}\left\{X \mid Y=y_{2}\right\} & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6
\end{array}
$$

A possible binary Huffman tree for the above conditional distribution looks like Figure 2. From the tree, the expected codeword length W_{2} of a binary Huffman code for X given $Y=y_{2}$ is $W_{2}=0+2 / 3+6 / 3=8 / 3$ bits.
(iii) When Y is random, the probability distribution of X is

$$
\begin{array}{c|cccccc}
X & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline \operatorname{Pr}\{X\} & 7 / 24 & 7 / 24 & 5 / 48 & 5 / 48 & 5 / 48 & 5 / 48
\end{array}
$$

Figure 1: A possible binary Huffman code construction for Problem 3(i).

Figure 2: A possible binary Huffman code construction for Problem 3(ii).

A possible binary Huffman tree for the above distribution looks like Figure 3. From the tree, the expected codeword length W of a binary Huffman code for X is $W=$ $0+14 / 12+15 / 12=29 / 12$ bits. $W=29 / 12=3 / 4 \times 7 / 3+1 / 4 \times 8 / 3=\operatorname{Pr}\{Y=$ $\left.y_{1}\right\} W_{1}+\operatorname{Pr}\left\{Y=y_{2}\right\} W_{2}$. So yes, $W=\operatorname{Pr}\left\{Y=y_{1}\right\} W_{1}+\operatorname{Pr}\left\{Y=y_{2}\right\} W_{2}$ for this particular joint distribution.

Figure 3: A possible binary Huffman code construction for Problem 3(iii).
(iv) No, it is not true in general. Consider the following joint distribution:

$Y \backslash X$	x_{1}	x_{2}	x_{3}
y_{1}	$1 / 4$	$1 / 24$	$1 / 24$
y_{2}	$1 / 6$	$1 / 3$	$1 / 6$

For this distribution, it can be verified that $W_{1}=5 / 4$ bits, $W_{2}=3 / 2$ bits, and $W=$ $19 / 12$ bits. However, $\operatorname{Pr}\left\{Y=y_{1}\right\} W_{1}+\operatorname{Pr}\left\{Y=y_{2}\right\} W_{2}=1 / 3 \times 5 / 4+2 / 3 \times 3 / 2=17 / 12$ bits.
(v) Consider $Z=(X, Y)$ as a random variable with $\operatorname{Pr}\left\{Z=\left(x_{i}, y_{j}\right)\right\}=\operatorname{Pr}\left\{x_{i}, y_{j}\right\}$, $i=1, \cdots, 6, j=1,2$. Then one possible Huffman tree looks like Figure 4. From the tree, the expected codeword length for Z is $0+1+0+4 / 3+5 / 6=19 / 6$ bits.

Problem 4 (Code Mismatch). The expected codeword length is $L=\sum_{i=1}^{n} p_{i} l_{i}$. As $\log \left(1 / q_{i}\right) \leq l_{i} \leq \log \left(1 / q_{i}\right)+1$, we get

$$
\begin{gathered}
\sum_{i=1}^{n} p_{i} \log \frac{1}{q_{i}} \leq L \leq \sum_{i=1}^{n} p_{i}\left(\log \frac{1}{q_{i}}+1\right) \\
\underbrace{\sum_{i=1}^{n} p_{i} \log \frac{p_{i}}{q_{i}}}_{=D(p \| q)}+\underbrace{\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}}_{=H(p)} \leq L \leq \underbrace{\sum_{i=1}^{n} p_{i} \log \frac{p_{i}}{q_{i}}}_{=D(p \| q)}+\underbrace{\sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}}_{=H(p)}+\underbrace{\sum_{i=1}^{n} p_{i}}_{=1} \\
H(p)+D(p \| q) \leq L \leq H(p)+D(p \| q)+1 .
\end{gathered}
$$

Figure 4: A possible binary Huffman code construction for Problem 3(v).

