ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 2
Information Theory and Coding
Solution 1 September 28, 2010, SG1 - 15:15pm-17:00

Problem 1 (Series).
(a) Let $S_{n}=\sum_{i=0}^{n} \alpha^{i}$. Then $\alpha S_{n}=\sum_{i=0}^{n} \alpha^{i+1}=\sum_{i=1}^{n+1} \alpha^{i}$. Subtracting one equation from another, $S_{n}-\alpha S_{n}=\sum_{i=0}^{n} \alpha^{i}-\sum_{i=1}^{n+1} \alpha^{i}=1-\alpha^{n+1}$. Therefore, $S_{n}=\left(1-\alpha^{n+1}\right) /(1-\alpha)$.
(b) $\sum_{i=0}^{\infty} \alpha^{i}=\lim _{n \rightarrow \infty} S_{n}$. Limit converges for $|\alpha|<1$ to $1 /(1-\alpha)$.
(c) We know that $\sum_{i=0}^{\infty} \alpha^{i}=1 /(1-\alpha)$. Differentiating with respect to α on both sides, we get $\sum_{i=1}^{\infty} i \alpha^{i-1}=1 /(1-\alpha)^{2}$. Multiplying by α on both sides, we have $\sum_{i=1}^{\infty} i \alpha^{i}=\alpha /(1-\alpha)^{2}$.

Problem 2 (Bayes' Theorem). The information can be placed into a joint probability distribution function:

Company	Defective	Good	Total
A	$0.05 * 0.50=0.025$	$0.50-0.025=0.475$	0.50
B	$0.07 * 0.30=0.021$	$0.30-0.021=0.279$	0.30
C	$0.10 * 0.20=0.020$	$0.20-0.020=0.180$	0.20
Total	0.066	0.934	1.00

(a) $\operatorname{Pr}\{$ Defective $\}=0.066$.
(b) $\operatorname{Pr}\{$ Company $B \mid$ Defective $\}=\operatorname{Pr}\{$ Company B and Defective $\} / \operatorname{Pr}\{$ Defective $\}=$ 0.021/0.066 ≈ 0.318.
(c) No. If they were, then $\operatorname{Pr}\{$ Company $B \mid$ Defective $\}=0.318$ would have to equal $\operatorname{Pr}\{$ Company $B\}$, but it does not.

Problem 3 (Probability Distributions).
(a) (Geometric Distribution)
(i) $E[X]=\sum_{t=0}^{\infty} t p(1-p)^{t}$. From Problem 1(c) we know that $\sum_{t=1}^{\infty} t(1-p)^{t}=$ $(1-p) /(1-(1-p))^{2}=(1-p) / p^{2}$. Therefore, $E[X]=(1-p) / p$.
$\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2} . E\left[X^{2}\right]=\sum_{t=0}^{\infty} t^{2} p(1-p)^{t} . \mathrm{We}$ know that $\sum_{t=1}^{\infty} t(1-p)^{t}=(1-p) / p^{2}$. Differentiating both sides with respect to $(1-p)$, we get $\sum_{t=1}^{\infty} t^{2}(1-p)^{t-1}=\left(p^{2}+2 p(1-p)\right) / p^{4}=(2-p) / p^{3}$. Multiplying both sides by $(1-p)$, we get $\sum_{t=1}^{\infty} t^{2}(1-p)^{t}=(2-p)(1-p) / p^{3}$. Therefore, $E\left[X^{2}\right]=(2-p)(1-p) / p^{2}$, and $\operatorname{Var}[X]=(2-p)(1-p) / p^{2}-(1-p)^{2} / p^{2}=$ $(1-p) / p^{2}$.
(ii) $\operatorname{Pr}\{X \leq t\}=\sum_{i=0}^{t} \operatorname{Pr}\{X=i\}=\sum_{i=0}^{t} p(1-p)^{i}=p\left(1-(1-p)^{t+1}\right) /(1-(1-p))=$ $1-(1-p)^{t+1}$.
(iii) $\operatorname{Pr}\{X \geq t\}=1-\operatorname{Pr}\{X \leq t-1\}=(1-p)^{t}$. Similarly, $\operatorname{Pr}\{X>s\}=(1-p)^{s+1}$ and $\operatorname{Pr}\{X>s+t\}=(1-p)^{s+t+1}$. Therefore, $\operatorname{Pr}\{X>s+t\}=\operatorname{Pr}\{X>$ $s\} \operatorname{Pr}\{X \geq t\}$. But $\operatorname{Pr}\{X>s+t\}=\operatorname{Pr}\{X>s+t, X \geq t\}=\operatorname{Pr}\{X \geq$ $t\} \operatorname{Pr}\{X>s+t \mid X \geq t\}$. Using the the two previous equations, we get $\operatorname{Pr}\{X>$ $s+t \mid X \geq t\}=\operatorname{Pr}\{X>s\}$.
(iv) For a discrete memoryless random variable,

$$
\begin{aligned}
\operatorname{Pr}\{X>s+t\} & =\operatorname{Pr}\{X>s\} \operatorname{Pr}\{X \geq t\} \\
\text { and } \operatorname{Pr}\{X>s+t-1\} & =\operatorname{Pr}\{X>s-1\} \operatorname{Pr}\{X \geq t\}
\end{aligned}
$$

Subtracting one from another and using the fact that $\operatorname{Pr}\{X>s\}-\operatorname{Pr}\{X>$ $s-1\}=\operatorname{Pr}\{X=s\}$, we get

$$
\operatorname{Pr}\{X=s+t\}=\operatorname{Pr}\{X=s\} \operatorname{Pr}\{X \geq t\}
$$

Now,

$$
\begin{aligned}
E[X-t \mid X \geq t] & =\sum_{x=0}^{\infty}(x-t) \frac{\operatorname{Pr}\{X-t=x-t, X \geq t\}}{\operatorname{Pr}\{X \geq t\}} \\
& =\sum_{x=t}^{\infty}(x-t) \frac{\operatorname{Pr}\{X=x\}}{\operatorname{Pr}\{X \geq t\}} \\
& =\sum_{i=0}^{\infty} i \frac{\operatorname{Pr}\{X=i+t\}}{\operatorname{Pr}\{X \geq t\}} \\
& =\sum_{i=0}^{\infty} i \frac{\operatorname{Pr}\{X=i\} \operatorname{Pr}\{X \geq t\}}{\operatorname{Pr}\{X \geq t\}} \quad \text { (memoryless property) } \\
& =\sum_{i=0}^{\infty} i \operatorname{Pr}\{X=i\}=E[X] .
\end{aligned}
$$

This exercise can be similarly repeated for a continuous random variable X with the memoryless property by using integrals instead of sums.
(b) (Binomial Distribution) The expectation can be computed as follows:

$$
\begin{aligned}
E[X] & =\sum_{n=0}^{N} n\binom{N}{n} p^{n}(1-p)^{N-n} \\
& =\sum_{n=0}^{N} n \frac{N!}{(N-n)!n!} p^{n}(1-p)^{N-n} \\
& =\sum_{n=0}^{N} \frac{N!}{(N-n)!(n-1)!} p^{n}(1-p)^{N-n} \\
& =N p \sum_{n=0}^{N} \frac{(N-1)!}{(N-n)!n!} p^{n-1}(1-p)^{N-n} \\
& =N p \sum_{n=0}^{N}\binom{N-1}{n-1} p^{n-1}(1-p)^{N-n} \\
& =N p .
\end{aligned}
$$

It can also be obtained much simpler by noting that a binomially distributed random variable X can be written as a sum of N independent and identically distributed binary random variables X_{1}, \cdots, X_{N} such that $\operatorname{Pr}\left\{X_{i}=1\right\}=p$ and $\operatorname{Pr}\left\{X_{i}=0\right\}=$ $(1-p)$ for $i=1, \cdots, N$. As $E\left[X_{i}\right]=p, E[X]=E\left[\sum_{i=1}^{N} X_{i}\right]=\sum_{i=1}^{N} E\left[X_{i}\right]=N p$. Similarly, using the fact that $\operatorname{Var}\left[X_{i}\right]=(1-p)^{2} \cdot p+(0-p)^{2} \cdot(1-p)=p(1-p)$ and $\operatorname{Var}[X]=\sum_{i=1}^{N} \operatorname{Var}\left[X_{i}\right]$ (because X_{i} are mutually independent), we get $\operatorname{Var}[X]=$ $N p(1-p)$.
(c) (Poisson Distribution)
(i) The expectation can be computed as follows:

$$
\begin{aligned}
E[X] & =\sum_{n=1}^{\infty} n e^{-\lambda} \frac{\lambda^{n}}{n!} \\
& =\lambda e^{-\lambda} \underbrace{\sum_{n=1}^{\infty} \frac{\lambda^{n-1}}{(n-1)!}}_{=e^{\lambda}} \\
& =\lambda .
\end{aligned}
$$

The variance can be computed as follows:

$$
\begin{aligned}
\operatorname{Var}[X] & =E\left[X^{2}\right]-E[X]^{2} \\
& =\sum_{n=1}^{\infty} n^{2} e^{-\lambda} \frac{\lambda^{n}}{n!}-\lambda^{2} \\
& =\sum_{n=1}^{\infty}(n(n-1)+n) e^{-\lambda} \frac{\lambda^{n}}{n!}-\lambda^{2} \\
& =\sum_{n=2}^{\infty} n(n-1) e^{-\lambda} \frac{\lambda^{n}}{n!}+\underbrace{\sum_{n=1}^{\infty} n e^{-\lambda} \frac{\lambda^{n}}{n!}}_{=E[X]=\lambda}-\lambda^{2} \\
& =\lambda^{2} e^{-\lambda} \underbrace{\sum_{n=2}^{\infty} \frac{\lambda^{n-2}}{(n-2)!}}_{=e^{\lambda}}+\lambda-\lambda^{2} \\
& =\lambda .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \operatorname{Pr}\{X=n \mid N\} & =\lim _{N \rightarrow \infty}\binom{N}{n} p^{n}(1-p)^{N-n} \\
& =\lim _{N \rightarrow \infty} \frac{N(N-1) \cdots(N-n+1)}{n!}\left(\frac{\lambda}{N}\right)^{n}\left(1-\frac{\lambda}{N}\right)^{N-n} \\
& =\frac{\lambda^{n}}{n!} \lim _{N \rightarrow \infty} \frac{N(N-1) \cdots(N-n+1)}{N^{n}}\left(1-\frac{\lambda}{N}\right)^{N-n} \\
& =\frac{\lambda^{n}}{n!} \underbrace{\lim _{N \rightarrow \infty} \frac{N(N-1) \cdots(N-n+1)}{N^{n}}}_{=1} \underbrace{\lim _{N \rightarrow \infty}\left(1-\frac{\lambda}{N}\right)^{N-n}}_{=e^{-\lambda}} \\
& =e^{-\lambda} \frac{\lambda^{n}}{n!} .
\end{aligned}
$$

(d) (Exponential Distribution)
(i) The expectation can be computed as follows:

$$
\begin{aligned}
E[X] & =\int_{x=0}^{\infty} x \lambda e^{-\lambda x} d x \\
& =-\left.x e^{-\lambda x}\right|_{x \rightarrow \infty}+\left.x e^{-\lambda x}\right|_{x=0}+\int_{x=0}^{\infty} e^{-\lambda x} d x \\
& =-0+0-\frac{1}{\lambda}\left(\left.e^{-\lambda x}\right|_{x \rightarrow \infty}-\left.e^{-\lambda x}\right|_{x=0}\right) \\
& =\frac{1}{\lambda}
\end{aligned}
$$

The variance can be computed as follows:

$$
\begin{aligned}
\operatorname{Var}[X] & =\int_{x=0}^{\infty}(x-1 / \lambda)^{2} \lambda e^{-\lambda x} d x \\
& =-\left.(x-1 / \lambda)^{2} e^{-\lambda x}\right|_{x \rightarrow \infty}+\left.(x-1 / \lambda)^{2} e^{-\lambda x}\right|_{x=0}+\int_{x=0}^{\infty} 2(x-1 / \lambda) e^{-\lambda x} d x \\
& =\frac{1}{\lambda^{2}}-\left.\frac{2(x-1 / \lambda)}{\lambda} e^{-\lambda x}\right|_{x \rightarrow \infty}+\left.\frac{2(x-1 / \lambda)}{\lambda} e^{-\lambda x}\right|_{x=0}+\int_{x=0}^{\infty} 2 e^{-\lambda x} d x \\
& =\frac{1}{\lambda^{2}}-\frac{2}{\lambda}-\frac{2}{\lambda}\left(\left.e^{-\lambda x}\right|_{x \rightarrow \infty}-\left.e^{-\lambda x}\right|_{x=0}\right) \\
& =\frac{1}{\lambda^{2}} .
\end{aligned}
$$

(ii) $\operatorname{Pr}\{X \geq t\}=\int_{t}^{\infty} \lambda e^{-\lambda x} d x=e^{-\lambda t}$. Similarly, $\operatorname{Pr}\{X>s\}=e^{-\lambda s}$ and $\operatorname{Pr}\{X>$ $s+t\}=e^{-\lambda(s+t)}$. Therefore, $\operatorname{Pr}\{X>s+t\}=\operatorname{Pr}\{X>s\} \operatorname{Pr}\{X \geq t\}$. As $\operatorname{Pr}\{X>s+t, X \geq t\}=\operatorname{Pr}\{X>s+t\}$, we get $\operatorname{Pr}\{X>s+t \mid X \geq t\}=\operatorname{Pr}\{X>$ $s\}$. In fact, this is the only continuous distribution that has this memoryless property.
(iii) This can be shown by seeing the complementary cumulative distribution function of $Z=X+Y$ which is given by $\operatorname{Pr}\{\min \{X, Y\}>z\}=\operatorname{Pr}\{X>z, Y>z\}=$ $\operatorname{Pr}\{X>z\} \operatorname{Pr}\{Y>z\}=e^{-\left(\lambda_{X}+\lambda_{Y}\right) z}$.
(e) (Gaussian Distribution) The expectation can be computed as follows:

$$
\begin{aligned}
E[X] & =\int_{x=-\infty}^{\infty} x \frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} d x \\
& =\int_{x=-\infty}^{\infty}(x-\mu) \frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} d x+\mu \underbrace{\int_{x=-\infty}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} d x}_{=1} \\
& =-\left.e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \frac{2 \sigma^{2}}{\sigma \sqrt{2 \pi}}\right|_{x \rightarrow-\infty}+\left.e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \frac{2 \sigma^{2}}{\sigma \sqrt{2 \pi}}\right|_{x \rightarrow \infty}+\mu \\
& =\mu .
\end{aligned}
$$

The variance can be computed as follows:

$$
\begin{aligned}
\operatorname{Var}[X]= & \int_{x=-\infty}^{\infty}(x-\mu)^{2} \frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} d x \\
= & -\left.\frac{(x-\mu)}{2} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \frac{2 \sigma^{2}}{\sigma \sqrt{2 \pi}}\right|_{x \rightarrow-\infty}+\left.\frac{(x-\mu)}{2} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \frac{2 \sigma^{2}}{\sigma \sqrt{2 \pi}}\right|_{x \rightarrow \infty} \\
& +\sigma^{2} \underbrace{\int_{x=-\infty}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} d x}_{=1} \\
= & \sigma^{2} .
\end{aligned}
$$

(f) (Multivariate Gaussian)
(i) (Matrix preliminaries) An $n \times n$ orthogonal matrix U is a matrix whose inverse is equal to its transpose, that is, $U U^{T}=U^{T} U=I_{n}$, where I_{n} is the $n \times n$ identity matrix. For any orthogonal matrix $(\operatorname{det} U)^{2}=\operatorname{det}\left(U U^{T}\right)=1$. Therefore, $|\operatorname{det} U|=1$.
Any real symmetric matrix Σ can be written as $\Sigma=U \Lambda U^{T}$, where U is an orthogonal matrix and Λ is a diagonal matrix whose diagonal entries are the eigenvalues of Σ. This is known as the spectral theorem. Determinant of Σ is equal to the product of the eigenvalues of the matrix, which is equal to determinant of Λ, that is, $\operatorname{det} \Sigma=\operatorname{det} \Lambda$.
If Σ is also positive definite, all eigenvalues of Σ are strictly positive, and therefore it is non-singular (that is, its inverse exists). Inverse of a positive definite matrix $\Sigma=U \Lambda U^{T}$ is given by $\Sigma^{-1}=U \Lambda^{-1} U^{T}$. This can be verified by seeing that $\Sigma \Sigma^{-1}=U \Lambda U^{T} U \Lambda^{-1} U^{T}=U \Lambda I_{n} \Lambda^{-1} U^{T}=U U^{T}=I_{n}$.
Let $\mathbf{Y}=U^{T}(\mathbf{X}-\mu)$. Then $\mathbf{X}=U \mathbf{Y}+\mu$. Using transformation of random variables, we have

$$
p_{\mathbf{Y}}(\mathbf{y})=p_{\mathbf{X}}(U \mathbf{y}+\mu)|\operatorname{det} J|
$$

where J is the Jacobian, that is, $J_{i j}=\frac{\partial x_{i}}{\partial y_{j}}$. As $\frac{\partial x_{i}}{\partial y_{j}}=U_{i j}$, this implies that $J=U$. Since U is an orthogonal matrix, $|\operatorname{det} J|=|\operatorname{det} U|=1$. Therefore, substituting for $p_{\mathbf{X}}(\cdot)$ we get

$$
p_{\mathbf{Y}}(\mathbf{y})=\frac{1}{(\operatorname{det} \Sigma)^{\frac{1}{2}}(2 \pi)^{\frac{n}{2}}} e^{-\frac{1}{2}(U \mathbf{y})^{T} \Sigma^{-1}(U \mathbf{y})} .
$$

Since Σ is positive definite, the exponent can be reduced as $(U \mathbf{y})^{T} \Sigma^{-1}(U \mathbf{y})=$ $\left(\mathbf{y}^{T} U^{T}\right)\left(U \Lambda^{-1} U^{T}\right)(U \mathbf{y})=\mathbf{y}^{T} \Lambda^{-1} \mathbf{y}$. Using the fact that $\operatorname{det} \Sigma=\operatorname{det} \Lambda$, we get

$$
p_{\mathbf{Y}}(\mathbf{y})=\frac{1}{(\operatorname{det} \Lambda)^{\frac{1}{2}}(2 \pi)^{\frac{n}{2}}} e^{-\frac{1}{2} \mathbf{y}^{T} \Lambda^{-1} \mathbf{y}} .
$$

As Λ is a diagonal matrix, Λ^{-1} is also a diagonal matrix with diagonal entries equal to inverse of the diagonal entries of Λ, that is, $\Lambda_{i i}^{-1}=1 / \Lambda_{i i}$. The exponent
thus becomes $-\frac{1}{2} \mathbf{y}^{T} \Lambda^{-1} \mathbf{y}=-\frac{1}{2} \sum_{i=1}^{n} \frac{y_{i}^{2}}{\Lambda_{i i}}$. Also, $\operatorname{det} \Lambda=\prod_{i=1}^{n} \Lambda_{i i}$. Therefore,

$$
\begin{aligned}
p_{\mathbf{Y}}(\mathbf{y}) & =\frac{1}{\left(\prod_{i=1}^{n} \Lambda_{i i}\right)^{\frac{1}{2}}(2 \pi)^{\frac{n}{2}}} e^{-\frac{1}{2} \sum_{i=1}^{n} \frac{y_{i}^{2}}{\Lambda_{i i}}} \\
& =\prod_{i=1}^{n} \frac{1}{\left(2 \pi \Lambda_{i i}\right)^{\frac{1}{2}}} e^{-\frac{1}{2} \frac{y_{i}^{2}}{\Lambda_{i i}}} \\
& =\prod_{i=1}^{n} p_{Y_{i}}\left(y_{i}\right),
\end{aligned}
$$

where $Y_{i} \sim \mathcal{N}\left(0, \Lambda_{i i}\right), i=1, \cdots, n$, are independent zero mean Gaussian random variables. They are independent because their joint distribution $p_{\mathbf{Y}}(\mathbf{y})$ can be expressed as a product of the distribution of the individual random variables $p_{Y_{i}}\left(y_{i}\right)$ as shown above. As a consequence, any multivariate Gaussian vector can be written as linear combination of independent Gaussian random variables.
Now, the expectation and covariance matrix of \mathbf{X} can be computed as follows:

$$
\begin{gathered}
E[\mathbf{X}]=E[U \mathbf{Y}+\mu]=U E[\mathbf{Y}]+\mu=\mu \\
E\left[(\mathbf{X}-\mu)(\mathbf{X}-\mu)^{T}\right]=E\left[(U \mathbf{Y})(U \mathbf{Y})^{T}\right]=U E\left[\mathbf{Y} \mathbf{Y}^{T}\right] U^{T}=U \Lambda U^{T}=\Sigma
\end{gathered}
$$

(ii) Any subset \mathbf{X}^{\prime} of \mathbf{X} is multivariate Gaussian because every linear combination of the elements of \mathbf{X}^{\prime} is a linear combination of the elements of \mathbf{X} and thus by definition I, \mathbf{X}^{\prime} is multivariate Gaussian. This can also be proven by using only definition II. However the proof is tedious. Interested readers can find the proof here: http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html
(iii) By the previous result, the subset $\mathbf{X}^{\prime}=\left(X_{i}, X_{j}\right) \sim \mathcal{N}\left(\mu^{\prime}, \Sigma^{\prime}\right)$. If X_{i} and X_{j} are uncorrelated, then Σ^{\prime} is a diagonal matrix. As seen in part (i) of this problem, if the covariance matrix of a multivariate Gaussian is diagonal, its joint probability density function can be written as a product of the probability density functions of the individual random variables. Hence X_{i} and X_{j} are independent.

