
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
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Problem 1 (Series).

(a) Let Sn =
∑n

i=0 α
i. Then αSn =

∑n
i=0 α

i+1 =
∑n+1

i=1 α
i. Subtracting one equation from

another, Sn−αSn =
∑n

i=0 α
i−
∑n+1

i=1 α
i = 1−αn+1. Therefore, Sn = (1−αn+1)/(1−α).

(b)
∑∞

i=0 α
i = limn→∞ Sn. Limit converges for |α| < 1 to 1/(1− α).

(c) We know that
∑∞

i=0 α
i = 1/(1 − α). Differentiating with respect to α on both

sides, we get
∑∞

i=1 iα
i−1 = 1/(1 − α)2. Multiplying by α on both sides, we have∑∞

i=1 iα
i = α/(1− α)2.

Problem 2 (Bayes’ Theorem). The information can be placed into a joint probability
distribution function:

Company Defective Good Total
A 0.05 ∗ 0.50 = 0.025 0.50− 0.025 = 0.475 0.50
B 0.07 ∗ 0.30 = 0.021 0.30− 0.021 = 0.279 0.30
C 0.10 ∗ 0.20 = 0.020 0.20− 0.020 = 0.180 0.20

Total 0.066 0.934 1.00

(a) Pr{Defective} = 0.066.

(b) Pr{Company B|Defective} = Pr{Company B and Defective}/Pr{Defective} =
0.021/0.066 ≈ 0.318.

(c) No. If they were, then Pr{Company B|Defective} = 0.318 would have to equal
Pr{Company B}, but it does not.

Problem 3 (Probability Distributions).

(a) (Geometric Distribution)

(i) E[X] =
∑∞

t=0 tp(1 − p)t. From Problem 1(c) we know that
∑∞

t=1 t(1 − p)t =
(1− p)/(1− (1− p))2 = (1− p)/p2. Therefore, E[X] = (1− p)/p.
V ar[X] = E[(X − E[X])2] = E[X2] − E[X]2. E[X2] =

∑∞
t=0 t

2p(1 − p)t. We
know that

∑∞
t=1 t(1−p)t = (1−p)/p2. Differentiating both sides with respect to

(1−p), we get
∑∞

t=1 t
2(1−p)t−1 = (p2 + 2p(1−p))/p4 = (2−p)/p3. Multiplying

both sides by (1 − p), we get
∑∞

t=1 t
2(1 − p)t = (2 − p)(1 − p)/p3. Therefore,

E[X2] = (2 − p)(1 − p)/p2, and V ar[X] = (2 − p)(1 − p)/p2 − (1 − p)2/p2 =
(1− p)/p2.

(ii) Pr{X ≤ t} =
∑t

i=0 Pr{X = i} =
∑t

i=0 p(1−p)i = p(1−(1−p)t+1)/(1−(1−p)) =
1− (1− p)t+1.

(iii) Pr{X ≥ t} = 1− Pr{X ≤ t− 1} = (1− p)t. Similarly, Pr{X > s} = (1− p)s+1

and Pr{X > s + t} = (1 − p)s+t+1. Therefore, Pr{X > s + t} = Pr{X >
s}Pr{X ≥ t}. But Pr{X > s + t} = Pr{X > s + t,X ≥ t} = Pr{X ≥
t}Pr{X > s+ t|X ≥ t}. Using the the two previous equations, we get Pr{X >
s+ t|X ≥ t} = Pr{X > s}.



(iv) For a discrete memoryless random variable,

Pr{X > s+ t} = Pr{X > s}Pr{X ≥ t},
and Pr{X > s+ t− 1} = Pr{X > s− 1}Pr{X ≥ t}.

Subtracting one from another and using the fact that Pr{X > s} − Pr{X >
s− 1} = Pr{X = s}, we get

Pr{X = s+ t} = Pr{X = s}Pr{X ≥ t}.

Now,

E[X − t|X ≥ t] =
∞∑
x=0

(x− t)Pr{X − t = x− t,X ≥ t}
Pr{X ≥ t}

=
∞∑
x=t

(x− t)Pr{X = x}
Pr{X ≥ t}

=
∞∑
i=0

i
Pr{X = i+ t}

Pr{X ≥ t}

=
∞∑
i=0

i
Pr{X = i}Pr{X ≥ t}

Pr{X ≥ t}
(memoryless property)

=
∞∑
i=0

iPr{X = i} = E[X].

This exercise can be similarly repeated for a continuous random variable X with
the memoryless property by using integrals instead of sums.

(b) (Binomial Distribution) The expectation can be computed as follows:

E[X] =
N∑
n=0

n

(
N

n

)
pn(1− p)N−n

=
N∑
n=0

n
N !

(N − n)!n!
pn(1− p)N−n

=
N∑
n=0

N !

(N − n)!(n− 1)!
pn(1− p)N−n

= Np
N∑
n=0

(N − 1)!

(N − n)!n!
pn−1(1− p)N−n

= Np

N∑
n=0

(
N − 1

n− 1

)
pn−1(1− p)N−n

= Np.

It can also be obtained much simpler by noting that a binomially distributed random
variable X can be written as a sum of N independent and identically distributed
binary random variables X1, · · · , XN such that Pr{Xi = 1} = p and Pr{Xi = 0} =
(1 − p) for i = 1, · · · , N . As E[Xi] = p, E[X] = E[

∑N
i=1Xi] =

∑N
i=1 E[Xi] = Np.

Similarly, using the fact that V ar[Xi] = (1− p)2 · p+ (0− p)2 · (1− p) = p(1− p) and
V ar[X] =

∑N
i=1 V ar[Xi] (because Xi are mutually independent), we get V ar[X] =

Np(1− p).
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(c) (Poisson Distribution)

(i) The expectation can be computed as follows:

E[X] =
∞∑
n=1

ne−λ
λn

n!

= λe−λ
∞∑
n=1

λn−1

(n− 1)!︸ ︷︷ ︸
=eλ

= λ.

The variance can be computed as follows:

V ar[X] = E[X2]− E[X]2

=
∞∑
n=1

n2e−λ
λn

n!
− λ2

=
∞∑
n=1

(n(n− 1) + n)e−λ
λn

n!
− λ2

=
∞∑
n=2

n(n− 1)e−λ
λn

n!
+
∞∑
n=1

ne−λ
λn

n!︸ ︷︷ ︸
=E[X]=λ

−λ2

= λ2e−λ
∞∑
n=2

λn−2

(n− 2)!︸ ︷︷ ︸
=eλ

+λ− λ2

= λ.

(ii)

lim
N→∞

Pr{X = n|N} = lim
N→∞

(
N

n

)
pn(1− p)N−n

= lim
N→∞

N(N − 1) · · · (N − n+ 1)

n!

(
λ

N

)n(
1− λ

N

)N−n
=

λn

n!
lim
N→∞

N(N − 1) · · · (N − n+ 1)

Nn

(
1− λ

N

)N−n
=

λn

n!
lim
N→∞

N(N − 1) · · · (N − n+ 1)

Nn︸ ︷︷ ︸
=1

lim
N→∞

(
1− λ

N

)N−n
︸ ︷︷ ︸

=e−λ

= e−λ
λn

n!
.

(d) (Exponential Distribution)
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(i) The expectation can be computed as follows:

E[X] =

∫ ∞
x=0

xλe−λxdx

= − xe−λx|x→∞ + xe−λx|x=0 +

∫ ∞
x=0

e−λxdx

= − 0 + 0− 1

λ

(
e−λx|x→∞ − e−λx|x=0

)
=

1

λ
.

The variance can be computed as follows:

V ar[X] =

∫ ∞
x=0

(x− 1/λ)2λe−λxdx

= − (x− 1/λ)2e−λx|x→∞ + (x− 1/λ)2e−λx|x=0 +

∫ ∞
x=0

2(x− 1/λ)e−λxdx

=
1

λ2
− 2(x− 1/λ)

λ
e−λx|x→∞ +

2(x− 1/λ)

λ
e−λx|x=0 +

∫ ∞
x=0

2e−λxdx

=
1

λ2
− 2

λ
− 2

λ

(
e−λx|x→∞ − e−λx|x=0

)
=

1

λ2
.

(ii) Pr{X ≥ t} =
∫∞
t
λe−λxdx = e−λt. Similarly, Pr{X > s} = e−λs and Pr{X >

s + t} = e−λ(s+t). Therefore, Pr{X > s + t} = Pr{X > s}Pr{X ≥ t}. As
Pr{X > s+ t,X ≥ t} = Pr{X > s+ t}, we get Pr{X > s+ t|X ≥ t} = Pr{X >
s}. In fact, this is the only continuous distribution that has this memoryless
property.

(iii) This can be shown by seeing the complementary cumulative distribution function
of Z = X + Y which is given by Pr{min{X, Y } > z} = Pr{X > z, Y > z} =
Pr{X > z}Pr{Y > z} = e−(λX+λY )z.

(e) (Gaussian Distribution) The expectation can be computed as follows:

E[X] =

∫ ∞
x=−∞

x
1

σ
√

2π
e−(x−µ)2/(2σ2)dx

=

∫ ∞
x=−∞

(x− µ)
1

σ
√

2π
e−(x−µ)2/(2σ2)dx+ µ

∫ ∞
x=−∞

1

σ
√

2π
e−(x−µ)2/(2σ2)dx︸ ︷︷ ︸
=1

= −e−(x−µ)2/(2σ2) 2σ2

σ
√

2π

∣∣∣∣
x→−∞

+ e−(x−µ)2/(2σ2) 2σ2

σ
√

2π

∣∣∣∣
x→∞

+ µ

= µ.
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The variance can be computed as follows:

V ar[X] =

∫ ∞
x=−∞

(x− µ)2 1

σ
√

2π
e−(x−µ)2/(2σ2)dx

= −(x− µ)

2
e−(x−µ)2/(2σ2) 2σ2

σ
√

2π

∣∣∣∣
x→−∞

+
(x− µ)

2
e−(x−µ)2/(2σ2) 2σ2

σ
√

2π

∣∣∣∣
x→∞

+ σ2

∫ ∞
x=−∞

1

σ
√

2π
e−(x−µ)2/(2σ2)dx︸ ︷︷ ︸
=1

= σ2.

(f) (Multivariate Gaussian)

(i) (Matrix preliminaries) An n× n orthogonal matrix U is a matrix whose inverse
is equal to its transpose, that is, UUT = UTU = In, where In is the n× n iden-
tity matrix. For any orthogonal matrix (detU)2 = det(UUT ) = 1. Therefore,
| detU | = 1.

Any real symmetric matrix Σ can be written as Σ = UΛUT , where U is an
orthogonal matrix and Λ is a diagonal matrix whose diagonal entries are the
eigenvalues of Σ. This is known as the spectral theorem. Determinant of Σ is
equal to the product of the eigenvalues of the matrix, which is equal to deter-
minant of Λ, that is, det Σ = det Λ.

If Σ is also positive definite, all eigenvalues of Σ are strictly positive, and there-
fore it is non-singular (that is, its inverse exists). Inverse of a positive definite
matrix Σ = UΛUT is given by Σ−1 = UΛ−1UT . This can be verified by seeing
that ΣΣ−1 = UΛUTUΛ−1UT = UΛInΛ−1UT = UUT = In.

Let Y = UT (X − µ). Then X = UY + µ. Using transformation of random
variables, we have

pY(y) = pX(Uy + µ)| det J |,

where J is the Jacobian, that is, Jij = ∂xi
∂yj

. As ∂xi
∂yj

= Uij, this implies that

J = U . Since U is an orthogonal matrix, | det J | = | detU | = 1. Therefore,
substituting for pX(·) we get

pY(y) =
1

(det Σ)
1
2 (2π)

n
2

e−
1
2

(Uy)TΣ−1(Uy).

Since Σ is positive definite, the exponent can be reduced as (Uy)TΣ−1(Uy) =
(yTUT )(UΛ−1UT )(Uy) = yTΛ−1y. Using the fact that det Σ = det Λ, we get

pY(y) =
1

(det Λ)
1
2 (2π)

n
2

e−
1
2
yTΛ−1y.

As Λ is a diagonal matrix, Λ−1 is also a diagonal matrix with diagonal entries
equal to inverse of the diagonal entries of Λ, that is, Λ−1

ii = 1/Λii. The exponent
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thus becomes −1
2
yTΛ−1y = −1

2

∑n
i=1

y2
i

Λii
. Also, det Λ =

∏n
i=1 Λii. Therefore,

pY(y) =
1

(
∏n

i=1 Λii)
1
2 (2π)

n
2

e
− 1

2

Pn
i=1

y2
i

Λii

=
n∏
i=1

1

(2πΛii)
1
2

e
− 1

2

y2
i

Λii

=
n∏
i=1

pYi(yi),

where Yi ∼ N (0,Λii), i = 1, · · · , n, are independent zero mean Gaussian random
variables. They are independent because their joint distribution pY(y) can be
expressed as a product of the distribution of the individual random variables
pYi(yi) as shown above. As a consequence, any multivariate Gaussian vector can
be written as linear combination of independent Gaussian random variables.

Now, the expectation and covariance matrix of X can be computed as follows:

E[X] = E[UY + µ] = UE[Y] + µ = µ

E[(X− µ)(X− µ)T ] = E[(UY)(UY)T ] = UE[YYT ]UT = UΛUT = Σ.

(ii) Any subset X′ of X is multivariate Gaussian because every linear combination
of the elements of X′ is a linear combination of the elements of X and thus by
definition I, X′ is multivariate Gaussian. This can also be proven by using only
definition II. However the proof is tedious. Interested readers can find the proof
here: http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html

(iii) By the previous result, the subset X′ = (Xi, Xj) ∼ N (µ′,Σ′). If Xi and Xj are
uncorrelated, then Σ′ is a diagonal matrix. As seen in part (i) of this problem, if
the covariance matrix of a multivariate Gaussian is diagonal, its joint probability
density function can be written as a product of the probability density functions
of the individual random variables. Hence Xi and Xj are independent.
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