ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
 School of Computer and Communication Sciences

Handout 18
Homework 8
Information Theory and Coding
November 16, 2010, SG1 - 15:15-17:00

Problem 1 (Binary Erasure Channel). The binary erasure channel (BEC) is a channel with input $X \in\{0,1\}$ and output $Y \in\{0,1, e\}$ as shown in Figure 1. We will show that the capacity of the memoryless BEC is $C_{B E C}=1-\epsilon$.

Figure 1: Binary Erasure Channel
(a) Let the input distribution be $\operatorname{Pr}\{X=1\}=\alpha$ and $\operatorname{Pr}\{X=0\}=1-\alpha$. Show that:
(i) $H(Y \mid X)=H_{b}(\epsilon)$
(ii) $H(Y)=H_{b}(\epsilon)+(1-\epsilon) H_{b}(\alpha)$
(iii) $I_{\alpha}(X ; Y)=(1-\epsilon) H_{b}(\alpha)$
where $H_{b}(\zeta)=-\zeta \log \zeta-(1-\zeta) \log (1-\zeta)$.
(b) Show that $C_{B E C}=1-\epsilon$. What is the capacity achieving input distribution?

Problem 2 (Z Channel). The Z channel is a channel with input $X \in\{0,1\}$ and output $Y \in\{0,1\}$ as shown in Figure 2. Here we will derive the capacity of the Z channel.

Figure 2: Z Channel
(a) Let the input distribution be $\operatorname{Pr}\{X=1\}=\alpha$ and $\operatorname{Pr}\{X=0\}=1-\alpha$. Show that:
(i) $H(Y \mid X)=\alpha H_{b}(\epsilon)$
(ii) $H(Y)=H_{b}(\alpha(1-\epsilon))$

Therefore $I_{\alpha}(X ; Y)=H_{b}(\alpha(1-\epsilon))-\alpha H_{b}(\epsilon)$.
(b) Show that $C_{Z}:=\max _{0 \leq \alpha \leq 1} I_{\alpha}(X ; Y)=\log \left(1+(1-\epsilon) \epsilon^{\frac{\epsilon}{1-\epsilon}}\right)$. What is the capacity achieving input distribution?
(c) Using MATLAB or any other tool, compute and compare the information rate $I_{1 / 2}(X ; Y)$, achieved by the uniform input distribution, with the capacity C_{Z} for $0 \leq \epsilon<1$. Approximately how much do we lose (in percentage) on the information rate by using the uniform input distribution instead of the capacity achieving distribution?

Problem 3 (Symmetric Channels). Consider a discrete memoryless channel with input $X \in\{1,2, \cdots, m\}$ and output $Y \in\{1,2, \cdots, n\}$. Let the channel transition probabilities be given by a matrix P where the entry in the x th row and y th column denotes the conditional probability $\operatorname{Pr}\{Y=y \mid X=x\}$. A channel is said to be symmetric if the rows of the matrix P are permutations of each other and the columns are permutations of each other. A channel is said to be weakly symmetric if the rows of the matrix P are permutations of each other and all the column sums $\sum_{x} p(y \mid x)$ are equal. Show that, for a weakly symmetric channel, the capacity C is

$$
C=\log n-H \text { (row of transition matrix })
$$

and this is achieved by a uniform distribution on the input alphabet. [Hint: Let \mathbf{r} be a row of the transition matrix. Show that $I(X ; Y) \leq \log n-H(\mathbf{r})$. Use the condition for equality.]

Problem 4 (Fano Inequality). Consider the following joint distribution on (X, Y):

$X \backslash Y$	a	b	c
1	$1 / 6$	$1 / 12$	$1 / 12$
2	$1 / 12$	$1 / 6$	$1 / 12$
3	$1 / 12$	$1 / 12$	$1 / 6$

Let $\hat{X}(Y)$ be an estimator of X based on Y and let $P_{e}=\operatorname{Pr}\{\hat{X}(Y) \neq X\}$.
(a) Find the estimator $\hat{X}(Y)$ that minimizes the probability of error P_{e}. What is the associated P_{e} ?
(b) Evaluate Fano's inequality for this problem and compare with the answer from (a). Explain, if any, the cause for looseness of the bound.

