ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
 School of Computer and Communication Sciences

Handout 14
Homework 7

Information Theory and Coding November 2, 2010, SG1 - 15:15-17:00

Problem 1. Suppose that a source X has alphabet \mathcal{X} and it is known that its distribution is either $p_{1}(x)$ or $p_{2}(x), \cdots$, or $p_{K}(x)$. Let $H_{k}=-\sum_{x} p_{k}(x) \log p_{k}(x)$ denote the entropy of the distribution $p_{k}, k=1, \cdots, K$. Define $\hat{p}(x)=\max _{1 \leq k \leq K} p_{k}(x)$, and $A=\sum_{x} \hat{p}(x)$.
(a) Show that $1 \leq A \leq K$.
(b) Show that there exists a prefix-free source code for X with codeword lengths $l(x)=$ $\lceil-\log \hat{p}(x)+\log A\rceil$. [Hint: Use Kraft inequality]
(c) Show that, for a code as in (b), $\bar{L}_{k}=\sum_{x} p_{k}(x) l(x)$ (the average codeword length under distribution p_{k}) satisfies

$$
H_{k} \leq \bar{L}_{k}<H_{k}+\log A+1 .
$$

(d) Suppose we have K binary Huffman codes for the alphabet \mathcal{X} corresponding to the K different distributions p_{1}, \cdots, p_{K}. Let $l_{k}(x)$ be the length of the sequence that the k 'th code assigns to the symbol $x \in \mathcal{X}, k=1, \cdots, K$. If we do not know the exact distribution of X, describe a way to use these K Huffman codes to produce a prefix-free code which uses no more than

$$
H(X)+\left\lceil\log _{2} K\right\rceil+1 \text { bits/symbol. }
$$

[Hint: For each symbol x, use the Huffman code which gives the shortest codeword.]
Problem 2. We showed in class that the maximum number of distinct words c into which a binary string of length n can be parsed satisfies

$$
n>c \log _{2}\left(\frac{c}{8}\right)
$$

Now derive a similar bound on n for the general case of a string over an alphabet of size K, that is, show that the maximum number of distinct K-ary words c into which a K-ary string of length n can be parsed satisfies

$$
n>c \log _{K}\left(\frac{c}{K^{3}}\right)
$$

Problem 3. The inequality in the above problem lower bounds n in terms of c. We will now show that n can also be upper bounded in terms of c.
(a) Show that, if $n \geq \frac{1}{2} m(m-1)$, then $c \geq m$. [Hint: Consider a string of $n=0+1+$ $\cdots+(m-1)$ words.]
(b) Find a sequence for which the bound in (a) is met with equality.
(c) Now show that $n<\frac{1}{2} c(c+1)$.

Problem 4. Infimum of a subset S of real numbers is equal to the greatest real number (not necessarily in the subset) that is less than or equal to all elements of the subset. Supremum of a subset S of real numbers is equal to the smallest real number that is greater than or equal to all elements of the subset. For eg., if $S=\{x \in \mathcal{R}: 0<x<1\}$, $\inf (S)=0$ and $\sup (S)=1$ (note that $0,1 \notin S)$. The limit inferior of a sequence $\left\{a_{n}\right\}$ is defined by

$$
\liminf _{n \rightarrow \infty} a_{n}:=\lim _{n \rightarrow \infty}\left(\inf _{m \geq n} a_{m}\right)
$$

The limit superior of a sequence is defined similarly with inf replaced by sup. Calculate the liminf and limsup of the following sequences:
(a)

$$
a_{n}=(-1)^{n} \frac{(n+5)}{n}
$$

(b)

$$
a_{n}=\left\{\begin{array}{ll}
\frac{1}{n} & \text { if } n=3 k \\
1-2^{-n} & \text { if } n=3 k+1 \\
\left(1+\frac{1}{n}\right)^{n} & \text { if } n=3 k+2
\end{array} \text { for } k \in\{1,2, \cdots\}\right.
$$

Problem 5. Let $X_{i}, i=1,2, \cdots$, be an IID sequence with the following distribution:

$$
X= \begin{cases}1 & \text { with probability } 1 / 2 \\ 2 & \text { with probability } 1 / 4 \\ 3 & \text { with probability } 1 / 4\end{cases}
$$

If $Y_{n}=\left(\prod_{i=1}^{n} X_{i}\right)^{1 / n}$, show that $Y \rightarrow 6^{1 / 4}$ as $n \rightarrow \infty$ with probability one.
Problem 6. Find the entropy rate associated with the random walk of a king on a 3×3 chessboard.

1	2	3
4	5	6
7	8	9

Find also the entropy rates of a rook and an even bishop. It is assumed that, at each step, a chess piece is moved to a different valid square than the current square and each of the possible valid squares is chosen with equal probability. [Hint: Entropy rates of a rook and an even bishop are easier to compute as they always have the same number of squares to move to from any valid position on the chessboard.]

