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Problem 1. Suppose that a source X has alphabet X and it is known that its distribution
is either p1(x) or p2(x), · · · , or pK(x). Let Hk = −

∑

x pk(x) log pk(x) denote the entropy
of the distribution pk, k = 1, · · · , K. Define p̂(x) = max1≤k≤K pk(x), and A =

∑

x p̂(x).

(a) Show that 1 ≤ A ≤ K.

(b) Show that there exists a prefix-free source code for X with codeword lengths l(x) =
⌈− log p̂(x) + log A⌉. [Hint: Use Kraft inequality]

(c) Show that, for a code as in (b), L̄k =
∑

x pk(x)l(x) (the average codeword length
under distribution pk) satisfies

Hk ≤ L̄k < Hk + log A + 1.

(d) Suppose we have K binary Huffman codes for the alphabet X corresponding to the
K different distributions p1, · · · , pK . Let lk(x) be the length of the sequence that
the k’th code assigns to the symbol x ∈ X , k = 1, · · · , K. If we do not know the
exact distribution of X, describe a way to use these K Huffman codes to produce a
prefix-free code which uses no more than

H(X) + ⌈log
2
K⌉ + 1 bits/symbol.

[Hint: For each symbol x, use the Huffman code which gives the shortest codeword.]

Problem 2. We showed in class that the maximum number of distinct words c into which
a binary string of length n can be parsed satisfies

n > c log
2

( c

8

)

.

Now derive a similar bound on n for the general case of a string over an alphabet of size
K, that is, show that the maximum number of distinct K-ary words c into which a K-ary
string of length n can be parsed satisfies

n > c logK

( c

K3

)

Problem 3. The inequality in the above problem lower bounds n in terms of c. We will
now show that n can also be upper bounded in terms of c.

(a) Show that, if n ≥ 1

2
m(m − 1), then c ≥ m. [Hint: Consider a string of n = 0 + 1 +

· · · + (m − 1) words.]

(b) Find a sequence for which the bound in (a) is met with equality.

(c) Now show that n < 1

2
c(c + 1).



Problem 4. Infimum of a subset S of real numbers is equal to the greatest real number (not
necessarily in the subset) that is less than or equal to all elements of the subset. Supremum
of a subset S of real numbers is equal to the smallest real number that is greater than or
equal to all elements of the subset. For eg., if S = {x ∈ R : 0 < x < 1}, inf(S) = 0 and
sup(S) = 1 (note that 0, 1 /∈ S). The limit inferior of a sequence {an} is defined by

lim inf
n→∞

an := lim
n→∞

(

inf
m≥n

am

)

.

The limit superior of a sequence is defined similarly with inf replaced by sup. Calculate
the lim inf and lim sup of the following sequences:

(a)

an = (−1)n (n + 5)

n
.

(b)

an =







1

n
if n = 3k

1 − 2−n if n = 3k + 1
(

1 + 1

n

)n
if n = 3k + 2

for k ∈ {1, 2, · · · }.

Problem 5. Let Xi, i = 1, 2, · · · , be an IID sequence with the following distribution:

X =







1 with probability 1/2
2 with probability 1/4
3 with probability 1/4.

If Yn = (
∏n

i=1
Xi)

1/n
, show that Y → 61/4 as n → ∞ with probability one.

Problem 6. Find the entropy rate associated with the random walk of a king on a 3 × 3
chessboard.

1 2 3
4 5 6
7 8 9

Find also the entropy rates of a rook and an even bishop. It is assumed that, at each step,
a chess piece is moved to a different valid square than the current square and each of the
possible valid squares is chosen with equal probability. [Hint: Entropy rates of a rook and
an even bishop are easier to compute as they always have the same number of squares to
move to from any valid position on the chessboard.]
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