ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 11
Introduction to Communication Systems
Homework 6
October 26, 2010, SG1 - 15:15-17:00

Problem 1. In class we showed that

$$
\binom{n}{k} \leq 2^{n h_{2}\left(\frac{k}{n}\right)}
$$

(a) Prove that

$$
\frac{2^{n h_{2}\left(\frac{k}{n}\right)}}{n+1} \leq\binom{ n}{k}
$$

(Hint: start by writing $\left.\sum_{i=0}^{n}\binom{n}{i} p^{i}(1-p)^{n-i}=1\right)$.
(b) What do the above two inequalities imply about the dominant behavior of $\frac{1}{n} \log \binom{n}{k}$?

Problem 2. In this problem, our aim is to give an alternative proof that $H(W)=$ $H(X) \mathbb{E}[$ length $(W)]$ for variable to fixed length coding with a valid and prefix-free dictionary. We use induction on the number α of internal nodes. This was suggested by a (smart) student in the class. :-)
(a) What is a valid size of the dictionary in terms of $K=|\mathcal{X}|(\mathcal{X}$ is the set of the underlying alphabets)?
(b) For $\alpha=1$ do the computation explicitly and prove the formula.
(c) Now assume that the formula is correct for $\alpha \leq k$ and show that it then is also correct for $\alpha=k+1$. Expand a dictionary with k internal nodes to one with $k+1$ internal nodes, and assume that the leaf node we extend has probability p. How does $H(W)$ and $\mathbb{E}[$ length $(W)]$ change?

Problem 3. Decode the string

$$
10010011
$$

that was encoded using the Lempel-Ziv algorithm with alphabet set $\mathcal{X}=\{a, l\}$.
Problem 4. We consider the case of encoding a binary sequence $x^{n} \in\{0,1\}^{n}$. We assume that the members of the sequence $x_{1}, x_{2}, \ldots, x_{n}$ are generated independently from Bernoulli distribution with probability p, where p is unknown.

We will encode the sequence in two steps. In the first step, we estimate the distribution p. We first observe the entire sequence, count the number of ones (i.e. $k=\sum_{i=1}^{n} x_{i}$), and then describe this number.
(a) How many bits need to be reserved for the binary description of k ? How many different sequences of length n exist with k ones? Label this number N.
(b) In the second stage of our algorithm, we encode one of the possible N sequences. How many bits are needed for this description?
(c) Find a good upper bound on the total length of the description $l\left(x^{n}\right)$ for our procedure. You may use the following bound:

$$
\sqrt{\frac{n}{8 k(n-k)}} \leq\binom{ n}{k} 2^{-n H(k / n)} \leq \sqrt{\frac{n}{\pi k(n-k)}} .
$$

(d) If the length of the optimal code for the Bernoulli distribution corresponding to $\frac{k}{n}$ is $l^{*}\left(x^{n}\right)$, what is the cost of describing the sequence statistics (i.e. calculate $\frac{l\left(x^{n}\right)-l^{*}\left(x^{n}\right)}{l^{*}\left(x^{n}\right)}$). How does this quantity behave as $n \rightarrow \infty$?

