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Problem 1 (Weak Law of Large Numbers). The weak law of large numbers is used to
derive many interesting results in information theory. Here we see how this law is derived.

(a) (Markov’s Inequality) If X is a non-negative continuous random variable, show that

Pr{X ≥ a} ≤ E[X]

a
, ∀ a > 0.

[Hint: Split E[X] into two integrals, one from 0 to a, and the other from a to ∞.]

(b) (Chebyshev’s Inequality) If Y is a random variable with mean µ and variance σ2,
show using Markov’s inequality that

Pr{|Y − µ| ≥ b} ≤ σ2

b2
, ∀ b > 0.

[Hint: Set X = (Y − µ)2 and use Markov’s inequality for X.]

(c) (Weak Law of Large Numbers) Let X1, X2, · · · , Xn be a sequence of independent and
indentically distributed (IID) random variables with mean µ and variance σ2. Let
the sample mean be Xn = 1

n

∑n
i=1Xi. Show that

Pr{|Xn − µ| ≥ ε} ≤ σ2

nε2
, ∀ ε > 0.

This means that the probability that the sample mean differs from the actual mean
by more than some given number ε goes to zero as n tends to infinity. This is the
weak law of large numbers.

Problem 2 (Jensen’s Inequality). A function f(x) is said to be convex over an interval
(a, b) if for every x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

If f is a convex function and X is a discrete random variable that takes values x1, x2, · · · , xn

with probabilities p1, p2, · · · , pn, such that
∑n

i=1 pi = 1, then show that

E[f(X)] ≥ f(E[X]).

This is known as Jensen’s inequality and is important in deriving many of the inequalities
we will encounter in information theory. What is the condition for equality? [Hint: When
n = 2, E[f(X)] = p1f(x1) + p2f(x2) ≥ f(p1f(x1) + p2f(x2)) = f(E[X]), because f is
convex. Use induction.]

Problem 3 (Huffman Coding). The joint probability mass distribution of random variables
X and Y is given below:



Y \ X x1 x2 x3 x4 x5 x6

y1 1/4 1/4 1/16 1/16 1/16 1/16
y2 1/24 1/24 1/24 1/24 1/24 1/24

(i) Given Y = y1, what is the expected word length W1 of a binary Huffman code for
X?

(ii) Given Y = y2, what is the expected word length W2 of a binary Huffman code for
X?

(iii) When Y is random, what is the expected word length W of a binary Huffman code
for X? Is W = Pr{Y = y1}W1 + Pr{Y = y2}W2?

(iv) Is (iii) true in general, that is, given two random variables X and Y that take values in
(x1, · · · , xn) and (y1, · · · , ym) respectively and their joint probability mass function,
if Wi is defined as the expected word length of a binary Huffman code for X given
Y = yi for i = 1, · · · , n, and W is the expected word length of a binary Huffman
code for X when Y is random, then is W =

∑n
i=1 Pr{Y = yi}Wi?

(v) What is the expected word length of a binary Huffman code for the pair (X, Y )?

Problem 4 (Code Mismatch). A Shannon code is a code that assigns a codeword of length
li, such that log(1/qi) ≤ li ≤ log(1/qi) + 1, to a symbol with probability qi. Suppose we
have such a code Cq for the probability distribution qi, i = 1, · · · , n. If however the actual
input has a distribution pi, i = 1, · · · , n, but we use the code Cq for encoding anyway, then
show that the expected Shannon codeword length L will satisfy

H(p) +D(p||q) ≤ L ≤ H(p) +D(p||q) + 1,

where the entropy H(p) := −
∑n

i=1 pi log pi, and the Kullback-Leibler divergence D(p||q) :=∑n
i=1 pi log pi

qi
.
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