ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 1

Information Theory and Coding
Homework 1
September 21, 2010, SG1 - 15:15-17:00

Problem 1 (Series). Compute the following sums and list the conditions for convergence: (a) $\sum_{i=0}^{n} \alpha^{i}$ (b) $\sum_{i=0}^{\infty} \alpha^{i}$ (c) $\sum_{i=1}^{\infty} i \alpha^{i}$. Here α is a complex number and n is a non-negative integer.

Problem 2 (Bayes' Theorem). Only three companies A, B, and C manufacture a certain product. Company A has a 50% market share and company B has 30% market share. 5% of company A's products are defective, 7% of company B's products are defective, and 10% of company C's products are defective.
(a) What is the probability that a randomly selected product is defective?
(b) What is the probability that a defective product came from company B?
(c) Is the event that a randomly selected product is defective independent from the event that a randomly selected product came from company B?

Problem 3 (Probability Distributions).
(a) (Geometric Distribution) If X is a discrete random variable with geometric distribution, then $\operatorname{Pr}\{X=t\}=p(1-p)^{t}, t=0,1,2, \cdots$, where p is a given parameter of the distribution such that $0<p<1$. An example of such a distribution is when X is the number of tails before heads comes up in repeated tossing of a biased coin with probability of heads equal to p.
(i) Find $E[X]$ and $\operatorname{Var}[X]$.
(ii) Find the cumulative distribution function $\operatorname{Pr}\{X \leq t\}$.
(iii) (Memoryless Property) A random variable X is memoryless with respect to $t>0$, if for any $s>0, \operatorname{Pr}\{X>s+t \mid X \geq t\}=\operatorname{Pr}\{X>s\}$. Show that, if s and t are non-negative integers, the geometric distribution satisfies the memoryless property. [Hint: Show that $\operatorname{Pr}\{X>s+t\}=\operatorname{Pr}\{X>s\} \operatorname{Pr}\{X \geq t\}$. Then use the fact that $\operatorname{Pr}\{X>s+t\}=\operatorname{Pr}\{X>s+t, X \geq t\}$.]
(iv) If X is a memoryless random variable, show that $E[X-t \mid X \geq t]=E[X]$.
(b) (Binomial Distribution) If X is a discrete random variable with binomial distribution, then $\operatorname{Pr}\{X=n \mid N\}=\binom{N}{n} p^{n}(1-p)^{N-n}, n=0,1, \cdots, N$, where N, a non-negative integer, and $p, 0<p<1$, are given parameters of the distribution. An example of such a distribution is when X is the number of heads in N repeated tosses of a biased coin with probability of heads equal to p. Find $E[X]$ and $\operatorname{Var}[X]$.
(c) (Poisson Distribution) If X is a non-negative discrete random variable with Poisson
 parameter of the distribution.
(i) Find $E[X]$ and $\operatorname{Var}[X]$.
(ii) Setting $\lambda=N p$, show that the Poisson distribution is a limiting case of the binomial distribution, that is,

$$
\operatorname{Pr}\{X=n\}=\lim _{N \rightarrow \infty} \operatorname{Pr}\{X=n \mid N\}
$$

(d) (Exponential Distribution) If X is a non-negative continuous random variable with exponential distribution, then the probability density function of X is given by $p_{X}(x)=\lambda e^{-\lambda x}, x \geq 0$, where $\lambda>0$ is a given parameter of the distribution.
(i) Find $E[X]$ and $\operatorname{Var}[X]$.
(ii) (Memoryless Property) Show that the exponential distribution satisfies memoryless property, that is, if X is a random variable with exponential distribution, then for any $s, t>0, \operatorname{Pr}\{X>s+t \mid X \geq t\}=\operatorname{Pr}\{X>s\}$.
(iii) If X and Y are independent random variables having exponential distributions with parameters λ_{X} and λ_{Y} respectively, then show that the random variable $Z=\min \{X, Y\}$ has an exponential distribution with parameter $\lambda_{X}+\lambda_{Y}$.
(e) (Gaussian Distribution) If X is a continuous random variable with Gaussian distribution, then the probability density function of X is given by $p_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}$, where μ and σ are given parameters are of the distribution. It is denoted as $X \sim$ $\mathcal{N}\left(\mu, \sigma^{2}\right)$. Find $E[X]$ and $\operatorname{Var}[X]$.
(f) (Multivariate Gaussian) Let $\mathbf{X}=\left(X_{1}, X_{2}, \cdots, X_{n}\right)^{T}$ be a vector of n random variables. It is said to have a multivariate normal distribution, denoted as $\mathbf{X} \sim \mathcal{N}(\mu, \Sigma)$, if any of the following equivalent conditions hold:
I. There exists an n-dimensional vector μ and a positive semi-definite $n \times n$ matrix Σ such that for any n-dimensional vector a, the linear combination $\tilde{X}=\mathbf{a}^{T} \mathbf{X}$ has the following univariate Gaussian distribution: $\tilde{X} \sim \mathcal{N}\left(\mathbf{a}^{T} \mu, \mathbf{a}^{T} \Sigma \mathbf{a}\right)$.
II. There exists an n-dimensional vector μ and a positive semi-definite $n \times n$ matrix Σ such that \mathbf{X} has the characteristic function (that is, the Fourier transform of its probability density function $p_{\mathbf{X}}(\mathbf{x})$) given by

$$
\phi_{\mathbf{X}}(\mathbf{t})=E\left[e^{i \mathbf{t}^{T} \mathbf{x}}\right]=e^{i \mathbf{t}^{T} \mu-\mathbf{t}^{T} \Sigma \mathbf{t}}
$$

If Σ is positive definite, then its probability density function is given by

$$
p_{\mathbf{X}}(\mathbf{x})=\frac{1}{(\operatorname{det} \Sigma)^{\frac{1}{2}}(2 \pi)^{\frac{n}{2}}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)}
$$

(i) Using definition II, and assuming Σ is positive definite, show that $E[\mathbf{X}]=\mu$ and $E\left[(\mathbf{X}-\mu)(\mathbf{X}-\mu)^{T}\right]=\Sigma$. [Hint: By spectral theorem, a positive definite matrix can be split into a product orthogonal and diagonal matrices as follows: $\Sigma=U \Lambda U^{T}$, where U is an orthogonal matrix, that is, $U U^{T}=I_{n}$ and Λ is a diagonal matrix with entries along the diagonal equal to the eigenvalues of Σ. Using this, show that $\mathbf{Y}=U^{T}(\mathbf{X}-\mu) \sim \mathcal{N}(0, \Lambda)$. Then use $E[\mathbf{X}]=E[U \mathbf{Y}+\mu]$, and $\left.E\left[(\mathbf{X}-\mu)(\mathbf{X}-\mu)^{T}\right]=E\left[(U \mathbf{Y})(U \mathbf{Y})^{T}\right].\right]$
(ii) Using definition I, show that any subset of \mathbf{X} is also multivariate Gaussian.
(iii) If two variables X_{i} and X_{j} of a multivariate Gaussian vector are uncorrelated, that is, $E\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]=0$, then show that X_{i} and X_{j} are independent. This is a special property of multivariate Gaussian distributions and is not true of general multivariate distributions.

