ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 16
Homework 9

Introduction to Communication Systems
November 23, 2010, SG1 - 15:15-17:00

Problem 1. A binary input channel C is given. Let c be the capacity of C. Suppose that Y_{1} and Y_{2} are two conditionally independent observations of the channel, i.e., $p\left(Y_{1}, Y_{2} \mid\right.$ $X)=p\left(Y_{1} \mid X\right) p\left(Y_{2} \mid X\right)$. This situation is depicted in the following figure. Denote the resulting channel by $C^{(* 2)}(C)$.

Prove the following:
(i) $I\left(Y_{1} ; Y_{2}\right)+I\left(X ; Y_{2}\right)=2 I\left(Y_{1} ; X\right)-I\left(Y_{1} ; X \mid Y_{2}\right)$.
(ii) Show that the capacity of $C^{(* 2)}(C)$ is at most $2 c$.

Problem 2. Consider again the setup as in Problem 1 but where the underlying channel C is now a binary erasure channels (BEC) with erasure probability p, call it $\operatorname{BEC}(p)$.
(i) What is the capacity of $\operatorname{BEC}(p)$?
(ii) What is the capacity of $C^{(* 2)}(\operatorname{BEC}(p))$ in terms of the capacity of $\operatorname{BEC}(p)$?
(iii) Bonus: Can you also find the capacity of this setup, but now assuming that the underlying channel is a binary symmetric channel (BSC) with error probability p ? I.e., what is the capacity of $C^{(* 2)}(\operatorname{BSC}(p))$?

Remark: It can be shown that for any binary-input memoryless symmetric channel C of capacity c the resulting capacity $C^{(* 2)}(C)$ is always upper bounded by $C^{(* 2)}(\operatorname{BEC}(p))$ (where p is chosen so that the capacity of $\operatorname{BEC}(p)$ is equal to c) and lower bounded by $C^{(* 2)}(\operatorname{BSC}(p))$ (where p is chosen so that the capacity of $\operatorname{BSC}(p)$ is equal to $\left.c\right)$. This result is called extremes of information combining and will play an important role when we talk about polar codes.

Problem 3. Let X be a continuous random variable with density function f and let $g_{n}=\frac{1}{n} f(n X)$ where n is some positive integer number.
(i) Find the differential entropy $h(X)$, if $f(x)=\lambda e^{-\lambda x}, x \geq 0$.
(ii) Prove that g_{n} is also a density function.
(iii) Suppose that Y_{n} is a continuous random variable with density function g_{n}. What is the relationship between $h(X)$ and $h\left(Y_{n}\right)$?

Problem 4. Consider two discrete memoryless channels $\left(\mathcal{X}_{1} ; p\left(y_{1} \mid x_{1}\right) ; \mathcal{Y}_{1}\right)$ and $\left(\mathcal{X}_{2} ; p\left(y_{2} \mid x_{2}\right) ; \mathcal{Y}_{2}\right)$ with capacities C_{1}, and C_{2} respectively. A new channel $\left(\mathcal{X}_{1} \times \mathcal{X}_{2} ; p\left(y_{1} \mid x_{1}\right) \times p\left(y_{2} \mid x_{2}\right) ; \mathcal{Y}_{1} \times \mathcal{Y}_{2}\right)$ is formed where the input is $\left(x_{1}, x_{2}\right),\left(x 1 \in \mathcal{X}_{1}\right.$ and $x_{2} \in \mathcal{X}_{2}$, and where the output is $\left(y_{1}, y_{2}\right)$. Find the capacity of this channel.

