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Problem 1. a) First define a new random variable θ as follows:

θ = f(X) =

{

1 when X = X1,
2 when X = X2,

Then we will have H(X, θ) = H(X) + H(θ|X) = H(X) since θ is a function of X.

On the other hand we have H(X, θ) = H(θ)+H(X|θ). We also know that H(X|θ) =
p(θ = 1)H(X|θ = 1) + p(θ = 2)H(X|θ = 2). Now from the assumption we have
p(θ = 1) = α and p(θ = 2) = 1 − α. Finally with substitution we have: H(X) =
H(θ) + αH(X1) + (1 − α)H(X2) = H(α) + αH(X1) + (1 − α)H(X2).

b) we differentiate the above expression with respect to α to find the maxima. We have:

dH(X)

dα
=

d(−α log α − (1 − α) log(1 − α) + αY1 + (1 − α)Y2)

dα
= − log α + log(1 − α) + Y1 − Y2

where Yi = H(Xi). Now, in order to find the maxima of H(X) we must solve the

equation dH(X)
dα

= 0. If we solve this equation for α we can easily see that α = 2Y2

2Y1+2Y2

and therefore 1−α = 2Y1

2Y1+2Y2
. Notice that with this α H(X) is maximized. Therefore

in general we have the following inequality for H(X):

H(X) ≤ −β log β − (1 − β) log(1 − β) + βY1 + (1 − β)Y2)

Where β = 2Y1

2Y1+2Y2
. Equivalently we have:

2H(X) ≤ 2−β log β−(1−β) log(1−β)+βY1+(1−β)Y2) (1)

= 2H(X1) + 2H(X2) (2)

In fact the equality (2) can be obtained using simple calculation an it is straight
forward.

Problem 2. a) The number of 100-bit binary sequences with three or fewer ones is:
(

100

0

)

+

(

100

1

)

+

(

100

2

)

+

(

100

3

)

= 166751.

So The required codeword length is log2 166751 = 18 bits.

b) The probability that a 100-bit sequence has three or fewer ones is equal to:

3
∑

i=0

(

100

i

)

(0.015)i(0.985)100−i = 0.935784065.

Thus, the probability that the sequence which is generated cannot be encoded is
1 − 0.935784065 = 0.064215935.



c) In the case of a random variable Sn that is the sum of n i.i.d. random variables
X1; X2; . . . ; Xn, Chebyshev’s inequality states:

P (|SN − nµ| ≥ ǫ) ≤
nσ2

ǫ2
.

where µ and σ2 are the mean and variance of Xi. In this problem, n = 100, µ = 0.015
and σ2 = (0.015)0.985. Note S100 ≥ 4 if and only if |S100 − 100(0.015)| ≥ 2.5, so we
should choose ǫ = 2.5. Then, P (S100 ≥ 4) ≤ 100×0.015×0.985

2.52 .

Problem 3. a) H(X|Y ) = H(Z + Y |Y ) = H(Z|Y ). Furthermore, since conditioning
decreases entropy, H(Z|Y ) ≤ H(Z) and thus H(X|Y ) ≤ H(Z)

b) H(X|Y ) = H(Z) if and only if H(Z|Y ) = H(Z). That is Z and Y are independent.

c) We can instead, prove that I(U ; W ) + I(U ; T ) ≤ I(U ; V ) + I(W ; T ). By adding
the term I(U ; T |W ) to both sides, it suffices to show that I(U ; T |W ) + I(U ; W ) +
I(U ; T ) ≤ I(U ; V ) + I(W ; T ) + I(U ; T |W )

By using chain rule, we have that I(U ; T |W )+I(U ; W ) = I(U ; T, W ) at the left hand
side, and I(U ; T |W ) + I(W ; T ) = I(U, W ; T ) at the right hand side. Thus it suffices
to show that I(U ; T, W ) + I(U ; T ) ≤ I(U ; V ) + I(U, W ; T ). From the Markov chain
U ↔ V ↔ (W, T ), I(U ; W, T ) ≤ I(U ; V ). Furthermore, I(U ; T ) ≤ I(U, W ; T ) =
I(U ; T ) + I(W ; T |U) since I(W ; T |U) ≥ 0. This concludes the solution

Problem 4. • First we compute H(X). Notice that we can partition all the possible
values of X into 4 groups. The first group consists of NNNN and FFFF . The
second group consists of all the strings of N and F of length 5 so that four symbols
are identical and the remaining one is different and also it is not the last one. One
can easily observe that there are 2 × 4 = 8 possibilities in this group. The third and
the fourth groups are defined similarly. (The third group consists of possible strings
of length 6 and the fourth group consists of the possible strings of length 7). One
can compute the sizes of the third and the fourth group. In fact the third group
contains 2×

(

5
2

)

= 20 and the fourth group contains 2×
(

6
3

)

= 40 strings. Since both
player are equally matched and the games are independent therefore the probability
of each string in the i− th group is equal to 2−i−3. (for example the probability of the
event X = FNNFFF is equal to 2−6. Using this information we can easily compute
H(X). In fact we can say that:

H(X) = 2 × (2−4 × 4) + 8 × (2−5 × 5) + 20 × (2−6 × 6) + 40 × (2−7 × 7)

• Next we compute H(Y ). As we saw in the previous part, the first group contains 2
elements each of which with probability 2−4. So, the probability that Y = 4 is equal
to 2 × 2−4 = 1/8. Similarly we can find out the probability of the other values of Y .
In fact we have: p(Y = 5) = 1/4, p(Y = 6) = 5/16 and p(Y = 7) = 5/16. So we have
H(Y ) = 3/8 + 1/2 + 5/16 log(16/5) + 5/16 log(16/5)

• The next quantity we can easily find is H(Y |X). Notice that if X is given then Y is
completely determined. So H(Y |X) = 0

• For the final quantity we use the equality H(X) + H(Y |X) = H(Y ) + H(X|Y ). we
already found three of the four. Therefore we can find the fourth quantity.
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Problem 5. Notice that this inequality can be also written as n(H(X)−ǫ)−1 ≤ log |Bn∩
An

(ǫ)| ≤ n(H(X) + ǫ). or equivalently

1

2
2n(H(X)−ǫ) ≤ |Bn ∩ An

(ǫ)| ≤ 2n(H(X)+ǫ).

when n is large enough. First we prove the right hand side inequality. Namely, we show
that if n is large enough then |Bn∩An

(ǫ)| ≤ 2n(H(X)+ǫ) But notice that |Bn∩An
(ǫ)| ≤ |An

(ǫ)| ≤

2n(H(X)+ǫ).
For the other inequality we argue as follows. By the weak law of large numbers we

know that 1
n

∑n

i=1 Xi approaches to E[X] in probability.This means that for every δ > 0,
p({xn ∈ X n : | 1

n

∑n

i=1 Xi − E[X]| > δ}) goes to zero, as n goes to infinity. In the other
words, p(xn ∈ Bn) goes to 1 as n goes to infinity. Therefore we can conclude that if n is
larger than a constant number N1 which depends on δ then p(xn ∈ Bn) ≥ 1− δ

2
. Similarly,

if n > N2 for some constant N2 which depends on δ then p(xn ∈ An
(ǫ)) ≥ 1 − δ

2
. Then we

use the following equation:

p(xn ∈ Bn) + p(xn ∈ An
(ǫ)) = p(xn ∈ Bn ∩ An

(ǫ)) + p(xn ∈ Bn ∪ An
(ǫ))

Using the previous inequalities about p(xn ∈ Bn) and p(xn ∈ An
(ǫ)) and also the fact that

p(xn ∈ Bn ∪ An
(ǫ)) ≤ 1, we have:

2 − δ ≤ 1 + p(xn ∈ Bn ∩ An
(ǫ))

and therefore p(xn ∈ Bn ∩ An
(ǫ)) ≥ 1 − δ, provided that n ≥ max{N1, N2}.

Now, we try to find a lower bound for |Bn ∩ An
(ǫ)|. Notice that each element of the

set Bn ∩ An
(ǫ) is in particular an element of An

(ǫ). Therefore each element of Bn ∩ An
(ǫ) has

probability at most 2−n(H(X)−ǫ). Therefore p(xn ∈ Bn ∩ An
(ǫ)) ≤ |Bn ∩ An

(ǫ)| × 2−n(H(X)−ǫ)

Combining the inequalities for the lower bound and upper bound for p(xn ∈ Bn ∩An
(ǫ)) we

have :
1 − δ ≤ p(xn ∈ Bn ∩ An

(ǫ)) ≤ |Bn ∩ An
(ǫ)| × 2−n(H(X)−ǫ)

Thus |Bn ∩ An
(ǫ)| ≥ (1 − δ) × 2n(H(X)−ǫ), provided that n ≥ max{N1, N2}. Since this

inequality holds for every positive δ we can take δ = 1/2 and then the left hand side
inequality follows.
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