ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 9
Homework 5

Problem 1 (Golay Sequences).
Consider the sequence $\mathbf{x}=\left(x_{0}, \cdots, x_{N}\right)$ where $x_{i} \in\{-1,1\}$. The aperiodic autocorrelation function of the sequence \mathbf{x} is defined as follows,

$$
R_{x}(k)=\sum_{i=0}^{N-k-1} x_{i} x_{i+k}, \quad \text { for } k=0, \cdots, N-1 .
$$

It is easy to check that $R_{x}(0)=N$. We say that the pair of sequences $\mathbf{x}, \mathbf{y} \in\{-1,+1\}^{N}$ are complementary, which we denote by $\mathbf{x} \sim \mathbf{y}$, if

$$
R_{x}(k)+R_{y}(k)=2 N \delta[k],
$$

where $\delta[k]=1$ for $k=0$ and zero otherwise.
i) Let $\mathbf{x} \sim \mathbf{y}$. Show that
a) $\mathbf{a} \sim \mathbf{b}$, where $a_{k}=(-1)^{k} x_{k}$ and $b_{k}=(-1)^{k} y_{k}$.
b) $\hat{\mathbf{x}} \sim \mathbf{y}$, where $\hat{x}_{k}=x_{N-k-1}$.
ii) Let $x[n]$ be a discrete signal such that $x[k]=x_{k}$ for $k=0, \cdots, N-1$ and zero otherwise. By using Parseval theorem prove that $\max _{f}\left|X\left(e^{j 2 \pi f}\right)\right| \geq \sqrt{N}$ where $X\left(e^{j 2 \pi f}\right)$ denotes the discrete time Fourier transform of $x[n]$.
iii) If $\mathbf{x} \sim \mathbf{y}$, prove that

$$
\left|X\left(e^{j 2 \pi f}\right)\right|,\left|Y\left(e^{j 2 \pi f}\right)\right| \leq \sqrt{2 N} .
$$

Hint: First show that $\left|X\left(e^{j 2 \pi f}\right)\right|^{2}+\left|Y\left(e^{j 2 \pi f}\right)\right|^{2}=2 N$.
Problem 2 (LTI Systems).
For each of the following systems determine whether the system is (1) linear, (2) timeinvariant, (3) stable, (4) causal, and (5) memoryless.
i) $T\{x[n]\}=\sum_{k=n_{0}}^{n} x[k]$.
ii) $T\{x[n]\}=x[M n]$ where M is a positive integer.
iii) $T\{x[n]\}=x[n] * x[n]$.
iv) $T\{x[n]\}=\operatorname{median}\left\{x\left[n-M_{1}\right], \ldots, x[n-1], x[n], x[n+1], \ldots, x\left[n+M_{2}\right]\right\}$ where M_{1} and M_{2} are positive integers.
v) $T\{x[n]\}=x[n] * h_{1}[n] * h_{2}[n] * h_{3}[n]$ where

$$
\begin{aligned}
& x[n] * h_{1}[n]= \begin{cases}x[n / M] & \text { when } \mathrm{n} \text { is a multiple of } M \\
0 & \text { otherwise }\end{cases} \\
& x[n] * h_{2}[n]=x[n]-\frac{1}{2} x[n-1] \\
& x[n] * h_{3}[n]=x[M n]
\end{aligned}
$$

and M is a positive integer.
Problem 3 (Z-Transform).
Let $X(z)=\sum_{-\infty}^{\infty} x[n] z^{-n}$ be defined as the z-transform of the sequence $\mathrm{x}[\mathrm{n}]$. Find the z-transform of the following two sequences, and draw their region of convergences (ROCs).
i) $x[n]=a^{n} u[n]$
ii) $x[n]=-a^{n} u[-n-1]$

Which of the above two sytems are causal?
Problem 4 (Inverse Z-Transform).
Power Series Expansion: If we expand the z-transform summation, we obtain:

$$
\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\cdots+x[-1] z^{1}+x[0] z^{0}+x[1] z^{-1}+\ldots
$$

We observe that the coefficients of this expansion are the sequence values of $x[n]$. Hence in case the ROC is appropriately specified, you might be able to invert a given $X(z)$ uniquely by finding its power series expansion.

1) Find the inverse z-transform using power series expansion.
i) $X(z)=z+\frac{\left(1-z^{-2}\right)\left(1+\frac{1}{2} z^{-1}\right)}{(1+z)}, 0<|z|<\infty$.
ii) $X(z)=\log \left(1-2 z^{-1}\right),|z|>2$.

Partial Fraction Expansion: Assume that the z-transform can be represented as a ratio of two polynomials, i.e.

$$
X(z)=\frac{\prod_{k=1}^{M}\left(1-c_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-d_{k} z^{-1}\right)}
$$

where c_{k} 's are the zeros and d_{k} 's the poles of $X(z)$. When $M<N$ and all the d_{k} 's are distinct, the partial fraction expansion reduces $X(z)$ into the following form:

$$
X(z)=\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}}
$$

where $A_{k}=\left.\left(1-d_{k} z^{-1}\right) X(z)\right|_{z=d_{k}}$. As you saw in Problem 3, $X(z)$ alone does not uniquely specify the corresponding $x[n]$. If the given ROC of $X(z)$ is such that each fraction of the above summation corresponds to the z-transform of a causal or anti-causal sequence, then you will be able to invert $X(z)$ into a unique sequence $x[n]$.
2) Find the inverse z-transform using partial fraction expansion.
i) $X(z)=\frac{1}{\left(1-\frac{1}{7} z^{-1}\right)\left(1-5 z^{-1}\right)}, \quad \frac{1}{7}<|z|<5$
ii) $X(z)=\frac{1+\frac{1}{2} z^{-2}}{1-\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}}, \quad|z|>\frac{1}{2}$

Contour integration: The inverse z-transform can be computed directly by evaluating the following integral:

$$
x[n]=\frac{1}{i 2 \pi} \oint_{C} X(z) z^{n-1} \mathrm{~d} z
$$

where the integration is around a counterclockwise closed circular contour of radius $|z|=r$ inside the ROC.

3) Find the inverse z-transform evaluating the contour integral.
i) $X(z)=\frac{\left(1-\frac{1}{2} z^{-1}\right)}{\left(1-\frac{1}{4} z^{-1}\right)\left(1+z^{-1}\right)},|z|>1$

Hint. Use the residue integration method.

