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Problem 1.

a) For n coins, there are 2n + 1 possible situations or “states”.

– One of the n coins is heavier.

– One of the n coins is lighter.

– They are all of equal weight.

Each weighing has three possible outcomes - equal, left pan heavier or right pan
heavier. Hence with k weightings, there are 3k possible outcomes and hence we can
distinguish between at most 3k different “states”. Hence 2n+1 ≤ 3k or n ≤ (3k−1)/2.
Looking at it from an information theoretic viewpoint, each weighing gives at most
log2(3) bits of information. There are 2n + 1 possible “states”, with a maximum
entropy of log2(2n + 1) bits. Hence in this situation, one would require at least
log2(2n + 1)/ log2(3) weightings to extract enough information for determination of
the odd coin, which gives the same result as above.

b) Split the coins into three groups of equal size. First we compare two groups. There
are two possibilities.

– If the two have the same weight it means that the possible counterfeit coin is in
the third group and all the other eight coins are of the same weight. Then we
compare three coins from the third group with three coins of the first group. If
they both have the same weight, the only possibility for the counterfeit coin is
the remaining coin of the fourth group and we can decide about it by the third
comparison. If they are of different weight, then we know that there exists a
counterfeit coin among those three coins from the fourth group. Moreover, now
we know that it is lighter or heavier than the other. By the last comparison we
can find it among the three.

– If the two groups are not of the same weight, without lose of generality we can
assume that the weight of the first pile is heavier than the second pile. suppose
that the coins in the first pile are called A1, A2, A3, A4, in the second pile are
called A5, A6, A7, A8 and in the thirst pile are called A9, A10, A11, A12. Notice
that if the counterfeit coin is in the first group then it is heavier and if it is in
the second group, it is lighter. Let ai be the weight of the coin Ai. In the second
comparison we make the following piles. A1, A2, A3, A5 are in the first group and
A4, A9, A10, A11 are in the second group. Now there are three possibilities.

∗ If These two groups are of the same weight then the counterfeit coin is
lighter and it is among A6, A7 or A8 and we can find it using the thirds
comparison.

∗ If a1 + a2 + a3 + a5 > a4 + a9 + a10 + a11 then the counterfeit coin is heavier
and it is among A1, A2 or A3 and we can find it using the thirds comparison.



∗ If a1 + a2 + a3 + a5 < a4 + a9 + a10 + a11 then the counterfeit coin is either
A5 and is lighter or it is A4 and it is heavier. So, for the third comparison
we can compare A5 with A1.

Problem 2. Suppose that in the n-th coin flip, for the first time both head and tail show
up. This means that in the first n − 1 coin flip head comes and in the n-th coin flip tail
comes, or vice-versa. The probability of the first event is pn−1q and the probability of the
second event is pqn−1 where q = 1−p. So, P (X = n) = pn−1q + pqn−1 for n ≥ 2. Therefore

H(X) = −
∞∑

n=2

(pn−1q + qn−1p) log (pn−1q + qn−1p)

Problem 3.

a) For every y in the range of the function f define Ay = {x ∈ A : f(x) = y}. In fact
Ay is nothing but the inverse image of the point y under the function f . So, we have
that

P (Y = y) =
∑

x∈Ay

P (X = x) (1)

Therefore P (Y = y) ≥ P (X = x) for every x ∈ Ay. Since logarithm is an increasing
function we have:

log(P (Y = y)) ≥ log P (X = x) for every x ∈ Ay. (2)

From equations 1 and 2 we have that

P (Y = y) log(P (Y = y)) = log(P (Y = y))
∑

x∈Ay

P (X = x) ≥
∑

x∈Ay

P (X = x) log P (X = x)

(3)

Notice that inequality 3 holds for every y. So if we add up all of these inequalities
we will get:

−H(Y ) =
∑

y∈ range of f

P (Y = y) log(P (Y = y)) ≥
∑

x∈A

P (X = x) log P (X = x) = −H(X)

Therefrom we have H(Y ) ≤ H(X).

b) From the previous part it is clear that H(X) = H(Y ) if and only if for every y, the
corresponding inequality 2 is equality. This only happens if |Ay| = 1 for every y.
That is to say, equality holds if and only if the pre-image of every element is of size
1. In the other words, H(X) = H(Y ) if and only if f is a one-to-one function.

Problem 4. We first observe that the length of the codeword assigned to the i has length
between log( 1

pi
) and log( 1

pi
) + 1. Therefore the average length of the code satisfies the

following inequality:
m∑

i=1

pi log(
1

pi

) ≤ L <
m∑

i=1

pi(1 + log(
1

pi

))

=

m∑

i=1

pi log(
1

pi

) +

m∑

i=1

pi

=
m∑

i=1

pi log(
1

pi

) + 1
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Figure 1: Binary Huffman code for the random variable X

This means that H(X) ≤ L < H(X) + 1. To complete the solution of the problem we
only need to prove the first part. Namely, we have to show that the code we constructed is
a prefix-free code. For a contradiction, suppose that the code is not prefix-free. Therefore
there exists two distinct indices i 6= j so that the codeword assigned to i is a prefix of the
codeword assigned to j. This means that the length of the length of the codeword assigned
to j is at least as large as the length of the codeword assigned to i. This implies that i < j.
( Notice that pi’s are ordered in a decreasing order and based on the code construction,
the length of the codewords are non-decreasing. So i must be less than j). Based on the
code construction, the code assigned to i is the binary representation of Si rounded off to
log⌈ 1

pi
⌉ bits. Similarly, the code assigned to j is the binary representation of Sj rounded off

to log⌈ 1
pj
⌉. Since the i-th codeword is a prefix of the j-th codeword, we conclude that the

Si and Sj agree in the first k digits in their binary representation where k is ⌈log⌈ 1
pi
⌉⌉. This

means that Sj − Si starts with ⌈log⌈ 1
pi
⌉⌉ zeros in its binary representation. Equivalently

Sj − Si < 2
−⌈log⌈ 1

pi
⌉⌉

< 2
− log⌈ 1

pi
⌉

< pi. On the other hand, from the definition of Sj ’s it is
clear that Sj −Si = pi +pi+1 + . . .+pj−1 ≥ pi. This contradiction shows that the described
code is prefix-free.

Problem 5.

a) In figure 1 we can see the Huffman code and the corresponding binary tree.

b) We first need to include a dummy symbol with probability 0. Then the solution is
depicted in figure 2
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Figure 2: Ternary Huffman code for the random variable X
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