ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 3

Signal Processing for Communications
Homework 2
February 28, 2011, INF 213-10:15-12:00

Problem 1 (Any Basis of a Hilbert Space has Same Cardinality). Let H be a Hilbert space. We say that $B=\left\{x_{i}\right\}$ forms a basis for H if B is a maximal orthonormal family in H, i.e., the elements x_{i} are orthonormal and there exists no element $x \in H$ which is orthogonal to all $\left\{x_{i}\right\}$.

Recall that in the space \mathbb{C}^{n} any set of orthogonal vectors has cardinality at most n.
Consider a Hilbert space H and assume that $B=\left\{x_{1}, \ldots, x_{n}\right\}$ as well $B^{\prime}=\left\{x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\}$ form bases for H. Show that $n=m$.

Hint: Write $x_{i}^{\prime}=\sum_{j=1}^{n} \alpha_{i j} x_{j}$ and now look at $\left\langle x_{k}^{\prime}, x_{l}^{\prime}\right\rangle$.
Problem 2 (Gram-Schmidt). Consider the Hilbert space \mathbb{R}^{4}. Apply the Gram-Schmidt procedure to the subspace spanned by the set of the following three vectors:

$$
u_{1}=\left(\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right), u_{2}=\left(\begin{array}{l}
5 \\
1 \\
1 \\
1
\end{array}\right), u_{3}=\left(\begin{array}{r}
-3 \\
-3 \\
1 \\
-3
\end{array}\right)
$$

Gram-Schmidt Orthonormalization Procedure: Given $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in a Hilbert space H, an orthonormal system $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ can be generated by applying:

$$
\begin{aligned}
& e_{0}=\frac{x_{0}}{\left\|x_{0}\right\|} \\
& e_{n+1}=\frac{x_{n+1}-\sum_{k=1}^{n}<x_{n+1}, e_{k}>e_{k}}{\left\|x_{n+1}-\sum_{k=1}^{n}<x_{n+1}, e_{k}>e_{k}\right\|}
\end{aligned}
$$

Problem 3 (Various Norms). Consider the vector space \mathbb{C}^{N}, i.e., the space of complex N-tuples, $x=\left[x_{1}, x_{1}, \cdots, x_{N}\right]$. Prove that both v_{1} as well as v_{2} are norms on \mathbb{C}^{N}, where

$$
v_{1}(x)=\sum_{k=1}^{N}\left|x_{k}\right|, \quad v_{2}(x)=\left(\sum_{k=1}^{N}\left|x_{k}\right|^{2}\right)^{\frac{1}{2}}
$$

Problem 4 (Convergent Sequences are Cauchy Sequences). Show that in any metric space any convergent sequence is a Cauchy sequence.

Problem 5 (Incompleteness of \mathbb{Q}). Consider the space of \mathbb{R} with the metric $d(x, y)=$ $|x-y|$ for $x, y \in \mathbb{R}$. We have seen in class that this space is complete.
(i) Let a_{n} be a sequence recursively defined by $a_{n+1}=\frac{a_{n}}{2}+\frac{1}{a_{n}}, a_{1}=2$. Show that a_{n} is a bounded, decreasing sequence of rational numbers. Prove that this sequence converges. What is its limit?
(ii) By using part (i), prove that the space of \mathbb{Q}, rational numbers, with the metric of absolute value is not complete.

Problem 6 (Properties of DFT). Let $x[n]$ and $y[n]$ be two finite-length sequences of length N . Let $X[k]$ and $Y[k]$ be their corresponding N-point DFTs. Prove the following properties of the DFT.

1) Linearity: $\forall \alpha, \beta \in \mathbb{C}$

$$
\alpha x[n]+\beta y[n] \xrightarrow{\mathrm{DFT}} \alpha X[k]+\beta Y[k] .
$$

2) Circular Shift:

$$
x[(n-m) \bmod N] \xrightarrow{\mathrm{DFT}} e^{-j\left(\frac{2 \pi}{N}\right) k m} X[k] .
$$

3) Duality:

$$
X[n] \xrightarrow{\mathrm{DFT}} N x[(-k) \bmod N] .
$$

4) Symmetries:

$$
\begin{gathered}
x^{*}[n] \xrightarrow{\mathrm{DFT}} X^{*}[(-k) \bmod N] . \\
x_{e p}[n]=\frac{1}{2}\left\{x[n]+x^{*}[(-n) \bmod N]\right\} \xrightarrow{\mathrm{DFT}} \operatorname{Re}\{X[k]\} . \\
x_{o p}[n]=\frac{1}{2}\left\{x[n]-x^{*}[(-n) \bmod N]\right\} \xrightarrow{\mathrm{DFT}} j \operatorname{Im}\{X[k]\} .
\end{gathered}
$$

Note: $x_{e p}[n]$ and $x_{o p}[n]$ are called the periodic conjugate-symmetric and periodic conjugateantisymmetric parts of $x[n]$, though they are not periodic sequences.
5) Cyclic Convolution:

$$
\sum_{m=0}^{N-1} x[m] y[(n-m) \bmod N] \xrightarrow{\mathrm{DFT}} X[k] Y[k] .
$$

