ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 1	Signal Processing for Communications
Homework 1	February 21, 2011, BC04 - 10:15-12:00

Problem 1 (Continuity of a function). Recall that a function f(x) is continuous at x_0 if for every $\epsilon > 0$, there is a $\delta(\epsilon) > 0$ such that

$$|f(x) - f(x_0)| < \epsilon$$
 whenever $|x - x_0| < \delta(\epsilon)$.

It means that $\lim_{x\to x_0} f(x) = f(x_0)$.

- **a)** Let $sinc(x) = \frac{sin(\pi x)}{(\pi x)}$ for $x \neq 0$, sinc(0) = 1. Show that sinc(x) is continuous everywhere. Hint: $r(x) = \frac{p(x)}{q(x)}$ is continuous at x_0 , if p(x) and q(x) are continuous at x_0 and $q(x_0) \neq 0$.
- **b)** Define g(x) as follows:

$$g(x) = \begin{cases} 0 \text{ if } x \in \mathbb{R} \setminus \mathbb{Q} \\ 1 \text{ if } x \in \mathbb{Q} \end{cases}$$

where \mathbb{R} denotes the set of real numbers and \mathbb{Q} denotes the set of rational numbers. Show that g(x) is nowhere continuous.

c) Assume that f(x) is continuous at x_0 and g(y) is continuous at y_0 , where $y_0 = f(x_0)$. Then prove that the composite function $h = g \circ f$ is continuous at x_0 .

Problem 2 (Convergence of infinite series). Let $S_n = \sum_{i=1}^n a_i$ where $a_i \in \mathbb{R}$. We say that the series $\sum_{i=1}^{\infty} a_i$ is *convergent* and has the sum S, if $\lim_{n\to\infty} S_n = S$, i.e., for every $\epsilon > 0$, there is a $N \in \mathbb{N}$ such that

$$|S_n - S| < \epsilon$$
 for all $n > N$.

- a) (*Necessary condition*) Show that if $\sum_{i=1}^{\infty} a_i$ is convergent, then $\lim_{n\to\infty} a_n = 0$.
- **b)** Let $\sum_{i=1}^{\infty} \frac{1}{i^p}$. Verify for which values of $p \in \mathbb{R}^+$, the series is convergent. Hint: Let $s(x) = \frac{1}{x^p}$. Then prove that

$$\sum_{i=2}^{n} \frac{1}{i^{p}} \le \int_{1}^{n} s(x) \mathrm{d}x \le \sum_{i=1}^{n-1} \frac{1}{i^{p}}$$

c) Test the following series for convergence or divergence.

i)
$$\sum_{n=1}^{\infty} x^n$$
 (Find a condition on the value of x for convergence).
ii) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$.
iii) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.

$$\text{iv}) \sum_{n=1}^{\infty} \frac{(-1)^n}{n}.$$

(*Cauchy criterion for convergence*) The series $\sum_{i=1}^{\infty} a_i$ converges if and only if for every $\epsilon > 0$, there is a number $N \in \mathbb{N}$ such that $|\sum_{i=n}^{m} a_i| < \epsilon$ for all $m \ge n > N$.

d) (Absolute convergence) Show that convergence of the series $\sum_{i=1}^{\infty} |a_i|$ implies convergence of $\sum_{i=1}^{\infty} a_i$.

Problem 3 (Sums). Compute the following sums (Check finiteness of the sums if necessary).

$$\begin{split} &\text{i) } \sum_{k=i}^{n} x^{k}. \\ &\text{ii) } \sum_{k=1}^{n} k x^{k}. \\ &\text{iii) } \sum_{n=1}^{n} (\frac{\sqrt{3}}{2} + \frac{1}{j2})^{n}. \\ &\text{iv) } \sum_{k=1}^{n} sin(2\pi \frac{k}{N}), \qquad n < N. \end{split}$$

Problem 4 (Inner Product Properties). Let *E* be an inner product space over \mathbb{C} . Let $x, y \in E$ and define $||x|| = \langle x, x \rangle^{\frac{1}{2}}$.

a) Show that

$$||x + y||^2 = ||x||^2 + 2 \operatorname{Re} \{\langle x, y \rangle\} + ||y||^2$$

holds. Assume that $E = \mathbb{R}^2$, and x, y are orthogonal vectors. Do you recover a familiar formula?

b) (*Parallelogram Law*) Show that

$$2||x||^{2} + 2||y||^{2} = ||x + y||^{2} + ||x - y||^{2}$$

holds. Give a geometrical interpretation when $E = \mathbb{R}^2$.

c) (*Polarization Identity*) Show that

$$\langle x, y \rangle = \frac{1}{4} \{ \|x+y\|^2 - \|x-y\|^2 + j\|x+jy\|^2 - j\|x-jy\|^2 \}$$

holds. Check that the above definition does satisfy the properties of an inner product. You can assume the scaling property holds, i.e. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ for any $\alpha \in \mathbb{C}$.