ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 11
Homework 6
Signal Processing for Communications
March 28, 2011, INF 213-10:15-12:00

Problem 1 (Overlap Add and Save Methods). Consider an L-point input sequence $x[n]=\operatorname{rand}(1, L)$ and a P-point impulse response

$$
h[n]= \begin{cases}\frac{10}{n+10} & 0 \leq n<P-1 \\ 0 & \text { otherwise }\end{cases}
$$

i) Use the following code in MATLAB to compute $y[n]=x[n] \circledast h[n]$ for $L=100000$ and $P=20$. How long does this computation take?

```
% L is length of input signal and P is length of impulse response.
L=100000, P=20;
x=rand (1,L); % Generate random sequence of numbers between [0,1].
h=10./((0:P-1)+10);
% Direct convolution
tic;
yl=conv(x,h); % Computing convolution of x[n] and h[n].
toc % computing the elapsed time.
```

ii) Segment $x[n]$ to sections of length $B=50$ as follows:

$$
x[n]=\sum_{r=0}^{\infty} x_{r}[n-r B],
$$

where

$$
x_{r}[n]= \begin{cases}x[n+r B] & 0 \leq n \leq B-1 \\ 0 & \text { otherwise }\end{cases}
$$

and show theoretically that $y[n]=\sum_{r=0}^{\infty} y_{r}[n+r B]$ where $y_{r}[n]=x_{r}[n] \circledast h[n]$.
iii) Use the following code which is the algorithm mentioned in part (ii) to compute $y[n]$. How long does it take? Compare the resulted elapsed time with the one in part (i).

```
% Overlap-add method :
y2=zeros(SIZE); % Replace the variable SIZE with an appropriate number.
temp=zeros(SIZE);
B=50;
tic;
for i=1:(L/B)
    % each time we consider a B-points window of x, convolve
    %it with h and save the output in B+(P-1) points of temp
    temp( (i-1)*B + 1 : i*B + (P-1) ) = conv(x( (i-1)*B + 1 : i*B ),h);
    % add with previous results considering overlaps
    y2=y2+temp;
    % make temp zero
    temp=zeros(SIZE));
end
toc
```

iv) Verify that if a B-point sequence is circularly convolved with a $P<B$-point sequence ($P<L$), then the first $P-1$ points of the result are the only points different from what would be obtained by employing linear convolution.
v) Again divide $x[n]$ into sections of length B so that each input section $x_{r}[n]$ overlaps the preceding section by $P-1$ points. Call the circular convolution of each segment with $h[n]$, name it $y_{r p}[n]$. Write $y[n]=x[n] \circledast h[n]$ in terms of $y_{r p}[n]$.
Hint: $x_{r}[n]=x[n+r(B-P+1)-P+1], 0 \leq n \leq B-1$.
vi) Use part (v) to compute $y[n]$ for $L=100000, P=20, B=50$. How long does this take?

Problem 2. i) Let $H\left(e^{i 2 \pi f}\right)$ be the ideal low pass filter with cut-off frequency f_{c}, i.e.

$$
H\left(e^{i 2 \pi f}\right)= \begin{cases}1 & |f| \leq f_{c} \\ 0 & \text { otherwise }\end{cases}
$$

Prove that $h[n]=\frac{\sin \left(2 \pi f_{c} n\right)}{\pi n}$ for $n \in \mathbb{Z}$.
ii) The following function is a low pass filter with the aforementioned impulse response with cut-off frequency f_{c} and length N :

```
%Low Pass Filter with cut-off frequency $f_c$ and length $N$:
function H = LowPass(fc,N)
if (N/2 == floor(N/2)) %Check N is even
    h = [sin (2*fc*pi*[-N/2:-1])./([-N/2:-1]*pi)
        ,2*fc,sin(2*fc*pi*[1:N/2-1])./([1:N/2-1]*pi)];
else %N is odd
    h = [sin(2*fc*pi*[-(N-1)/2:-1])./([-(N-1)/2:-1]*pi)
        ,2*fc,sin(2*fc*pi*[1:(N-1)/2])./([1:(N-1)/2]*pi)];
end
H = fft(h,N);
```

The following code plots the magnitude and phase of the frequency response of the above filter for $f_{c}=0.2$ and $N=100$. Explain why it is not an ideal low pass? Does it tend to an ideal filter by increasing N ?
Note that $\mathrm{fftshift}(\mathrm{H})$ rearranges the outputs of fft to the standard form.

```
H = LowPass(0.2,100);
subplot (2,1,1)
plot((-N/2:N/2-1)/N,abs(fftshift(H)));
subplot (2,1,2)
stem((-N/2:N/2-1)/N, angle(fftshift(H)));
```

iii) Consider the signal $x_{0}[n]=\sin (0.05 n)+\sin (.1 n)+\sin (.2 n)+\sin (n)$ for $1 \leq n \leq 100$. Write a code to filter the frequencies larger than 0.1 Hz . Compare your result with $x_{l p}[n]=\sin (0.05 n)+\sin (.1 n)+\sin (.2 n)$. They should be the same.
iv) (Decimation and Interpolation) Consider a system which performs down sampling by factor M, i.e. $x_{d}[n]=x_{l p}[M n]$, and then performs up sampling by factor L, i.e.

$$
x_{u}[n]= \begin{cases}x_{d}[n / L] & \text { if } n=k L \quad \text { for } k \in \mathbb{Z} \\ 0 & \text { otherwise }\end{cases}
$$

First assume that $M=L=2$. We want to retrieve $x_{l p}[n]$ from $x_{u}[n]$. Find an appropriate interpolation function $\left(h_{\text {int }}[n]\right)$ such that $x_{l p}[n]=h_{\text {int }}[n] \circledast x_{u}[n]$.
Hint: Compare the spectrum of $x_{u}[n]$ and $x_{l p}[n]$.
v) (Aliasing) Find necessary conditions on M and L in order to successfully retrieve $x_{l p}[n]$ from $x_{u}[n]$.

