ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Problem 1. (a)

$$
\begin{align*}
\operatorname{Pr}(R \leq r) & =\operatorname{Pr}(|z| \leq r) \tag{1}\\
& =\iint P_{z}(x+j y) d x d y \tag{2}\\
& =\int_{0}^{r} \int_{0}^{2 \pi} P_{z}(u \cos \theta+j u \sin \theta) u d u d \theta \tag{3}\\
& =\int_{0}^{r} \int_{0}^{2 \pi} P_{z}\left(u e^{j \theta}\right) u d u d \theta \tag{4}
\end{align*}
$$

Differentiating with respect to r will yield:

$$
P_{R}(r)=r \int_{0}^{2 \pi} P_{z}\left(r e^{j \theta}\right) d \theta
$$

(b)

$$
\operatorname{Pr}(U \leq u)=\operatorname{Pr}\left(R^{2} \leq u\right)=\operatorname{Pr}(R \leq \sqrt{u})
$$

Differentiating with respect to u :

$$
P_{U}(u)=\frac{1}{2 \sqrt{u}} P_{R}(\sqrt{u})=\frac{1}{2} \int_{0}^{2 \pi} P_{z}\left(\sqrt{u} e^{j \theta}\right) d \theta
$$

(c) Since z is circularly symmetric, $P_{z}\left(\sqrt{u} e^{j \theta}\right)$ does not depend on θ.

$$
P_{U}(u)=\pi P_{Z}(\sqrt{u})
$$

(d) If x and y are independent and with common density p, we have:

$$
P_{z}(x+j y)=P_{z}\left(\sqrt{x^{2}+y^{2}}(\cos \phi+j \sin \phi)\right)=p(x) p(y)
$$

Using part (c), we have

$$
\begin{align*}
P_{U}\left(x^{2}+y^{2}\right) & =\pi P_{z}\left(\sqrt{x^{2}+y^{2}}\right) \tag{6}\\
& =\pi p(x) p(y) \tag{7}
\end{align*}
$$

(e) Evaluating $P_{U}\left(x^{2}+y^{2}\right)$ at $x=0$ and $y=0$, we would have

$$
P_{U}\left(x^{2}+y^{2}\right)=\frac{\pi P_{u}\left(x^{2}\right) P_{u}\left(x^{2}\right)}{(\pi p(0))^{2}}
$$

Let us define $f(y)=\frac{P_{U}(u)}{(\pi p(0))^{2}}$. This is a continous function and satifies $f(a+b)=$ $f(a) f(b)$ for all nonnegative a and b. Using hint we have $f(a)=e^{\beta a}$. Solving for β by integrating $P_{U}(u)$ and making it equal to 1 .

$$
\beta=-\pi p^{2}(0)
$$

(f) Combining above we have

$$
P_{Z}(z)=P_{Z}(|z|)=\frac{1}{\pi} P_{U}\left(|z|^{2}\right)=\frac{1}{\pi} e^{-\frac{|z|^{2}}{\sigma^{2}}}
$$

So Z is a Gaussian random variable.
Problem 2. (a)

$$
f_{V \mid U}(\mathbf{v} \mid a)=\frac{1}{\left(\pi N_{0}\right)^{2}} e^{\frac{-\|\mathbf{v}-a\| \|^{2}}{N_{0}}}
$$

and

$$
f_{V \mid U}(\mathbf{v} \mid-a)=\frac{1}{\left(\pi N_{0}\right)^{n}} e^{-\|\mathbf{v}+a\| \|^{2}} \frac{\mathbf{v}_{0}}{}
$$

(b)

$$
\operatorname{LLR}(\mathbf{v})=\log \frac{f_{V \mid U}(\mathbf{v} \mid-a)}{f_{V \mid U}(\mathbf{v} \mid a)}=\frac{-\|\mathbf{v}-\mathbf{a}\|^{2}+\|\mathbf{v}+\mathbf{a}\|^{2}}{N_{0}}
$$

(c) ML rule is comparing LLR to the constant zero and because LLR depends on difference of distance of channel output to vectors a and $-a, \mathrm{ML}$ is a minimum distance detector.
(d)

$$
\|\mathbf{v}-\mathbf{a}\|^{2}=\|\mathbf{v}\|^{2}-\langle\mathbf{v}, \mathbf{a}\rangle-\langle\mathbf{a}, \mathbf{v}\rangle+\|\mathbf{a}\|^{2}
$$

and

$$
\|\mathbf{v}+\mathbf{a}\|^{2}=\|\mathbf{v}\|^{2}+\langle\mathbf{v}, \mathbf{a}\rangle+\langle\mathbf{a}, \mathbf{v}\rangle+\|\mathbf{a}\|^{2}
$$

As $\langle\mathbf{v}, \mathbf{a}\rangle+\langle\mathbf{a}, \mathbf{v}\rangle=2 \operatorname{Re}\langle\mathbf{v}, \mathbf{a}\rangle$, by substituting in (c) one gets the result.
(e) In the detection, only the real part of the $\langle\mathbf{v}, \mathbf{a}\rangle$ matters and it is important if it is positive or negative, but $|\mathbf{v}, \mathbf{a}|$ preserves none of the above.
(f) No, if v is in this space $c v$ can be out of the space.

Problem 3. (a) We know Fourier transform of sinc function is a rect. So the Fourier transform of sinc^{2} is rect $*$ rect. The Fourier transform of

$$
\operatorname{sinc}^{2}(W t)
$$

is

$$
\frac{1}{W} \Lambda\left(\frac{f}{W}\right),
$$

where $\Lambda(f)$ is a triangle function zero valued at $|f|=1$ and unit valued at $f=0$.
(b)

$$
v(t)=\sum_{k} u(K T) \operatorname{sinc}\left(\frac{t}{T}-k\right) * \operatorname{sinc}^{2}(W t)=\frac{1}{2 W} \sum_{k} u(K T) g(t-K T)
$$

(c) Because both $u(K T)$ and $g(t-K T)$ are non negative then $v(t)$ is non negative.
(d) In formula $u(t)=\sum_{k} u(K T) \operatorname{sinc}\left(\frac{t}{T}-k\right)$, we set $u(t)=1$. The result follows.
(e) We take Fourier transform of

$$
\sum_{k} g\left(\frac{t}{T}-k\right)=g\left(\frac{t}{T}\right) * \sum_{k} \delta(t-k T)
$$

We get

$$
G(f T) \sum_{k} \delta(f-k T)=\frac{1}{T} \frac{1}{W} \delta(f)=2 \delta(f)
$$

so $\sum_{k} g\left(\frac{t}{T}-k\right)=2$
(f)

$$
v(t)=\sum_{k} u(k T) g(t-k T) \leq \sum_{k} g(t-k T)=2
$$

(g)

$$
\begin{align*}
|v(t)| & =\left|\sum_{k} u(k T) g(t-k T)\right| \tag{8}\\
& \leq \sum_{k}|u(k T)||g(t-k T)| \tag{9}\\
& \leq \sum_{k}|g(t-k T)| \tag{10}\\
& =\sum_{k} g(t-k T) \tag{11}\\
& =2 \tag{12}
\end{align*}
$$

Problem 4. (a) For $0 \leq t \leq 1$, we have

$$
p(t) p(t-1)=p(t)-p^{2}(t)=0
$$

So the inner product $\langle p(t), p(t-1)\rangle$ which is an integration is also zero.
(b) For $|k|>2, p(t) p(t-k)=0$. The case $|k|=1$ follows from part (a).
(c) For $|k|=1, p(t) p(t-1) e^{j 2 \pi m t}=\left(p(t)-p^{2}(t)\right) e^{j 2 \pi m t}=0$. For the other values of k the product of two functions is zero everywhere.
(d)

$$
\begin{align*}
\left\langle p(t), p(t) e^{j 2 \pi m t}\right\rangle & =\int_{-1}^{1} p^{2}(t) e^{j 2 \pi m t} d t \tag{13}\\
& =\int_{-1}^{1} p(t) e^{j 2 \pi m t} d t \tag{14}\\
& =\int_{-1}^{0} p(t) e^{j 2 \pi m t} d t+\int_{0}^{1} p(t) e^{j 2 \pi m t} d t \tag{15}\\
& =\int_{0}^{1} p(t-1) e^{j 2 \pi m(t-1)} d t+\int_{0}^{1} p(t) e^{j 2 \pi m t} d t \tag{16}\\
& =\int_{0}^{1} p(t-1) e^{j 2 \pi m t} d t+\int_{0}^{1} p(t) e^{j 2 \pi m t} d t \tag{17}\\
& =\int_{0}^{1}(p(t-1)+p(t)) e^{j 2 \pi m t} d t \tag{18}\\
& =\int_{0}^{1} e^{j 2 \pi m t} d t=0 \tag{19}
\end{align*}
$$

(e) Yes, this property will hold: $p(t)$ being orthogonal to $p(t-k) e^{j 2 \pi m t}$ is equivalent to $\hat{p}(f)$ being orthogonal to $\hat{p}(f-m) e^{-j 2 \pi k t}$ for every nonzero m and k.

