
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 4 Advanced Digital Communications
Homework 1 October 8, 2010

Problem 1. pVW (v, w).

(a)

E[V +W ] =

∫∫
(v + w) pVW (v, w) dv dw (1)

=

∫∫
(vpVW (v, w) + wpVW (v, w)) dv dw (2)

=

∫∫
vpVW (v, w) dv dw +

∫∫
wpVW (v, w) dv dw (3)

=

∫
v

∫
pVW (v, w) dw dv +

∫
w

∫
pVW (v, w) dv dw (4)

=

∫
vpV (v) dv +

∫
wpW (w) dw (5)

= E[V ] + E[W ] (6)

(b)

E[V ·W ] =

∫∫
(v · w) pVW (v, w) dv dw (7)

=

∫∫
(v · w) pV (v) pW (w) dv dw (8)

=

∫
vpV (v) dv ·

∫
wpW (w) dw (9)

= E[V ] · E[W ] (10)

(c) Assume V = W and Pr(V = 1) = Pr(V = −1) = 1
2
. We compute E[V ] = E[W ] = 0

and E[VW ] = 1, so E[VW ] 6= E[V ]E[W ]

Now suppose (V,W ) takes values of (1, 1), (1,−1), (−1, 1), (−1,−1), (0, 0) with equal
probability 1

5
. Because Pr(W = 0|V = 1) = 0 6= 1

5
= Pr(W = 0), V and W are

not independent. We compute E[V ] = E[W ] = 0 and E[VW ] = 0, so E[VW ] =
E[V ]E[W ]

(d) Assume that V and W are independent and let σ2
V and σ2

W be the variances of V and
W , respectively. Show that the variance of V +W is given by σ2

V+W = σ2
V + σ2

W .

σ2
V+W = E

[
(V +W )2

]
− E[V +W ]2 (11)

= E[V 2] + E[W 2] + 2E[VW ]− (E[V ] + E[W ])2 (12)

= E[V 2] + E[W 2] + 2E[V ]E[W ]− E[V ]2 − E[W ]2 − 2E[V ]E[W ] (13)

= E[V 2]− E[V ]2 + E[W 2]− E[W ]2 (14)

= σ2
V + σ2

W (15)



Problem 2.

(a)

∑
n>0

Pr(N ≥ n) =
∞∑
n=1

∞∑
m=n

Pr(N = m) (16)

=
∞∑

m=1

m∑
n=1

Pr(N = m) (17)

=
∞∑

m=1

mPr(N = m) (18)

= E[N ] (19)

(b) ∫ ∞
0

Pr(x ≥ a) da =

∫ ∞
0

∫ ∞
a

fx(t) dt da (20)

=

∫ ∞
0

∫ t

0

fx(t) da dt (21)

=

∫ ∞
0

t fx(t) dt (22)

= E[X] (23)

(c) The main point is to note that G(t) = P (X ≥ t) is a non-increasing function of t.
So for any fixed value of a > 0, the rectangle between point (0, 0) and (a,G(a)) lies
below the function G(t). In conclusion, it follows from the discussion above that

aG(a) ≤
∫ a

0

G(a) dt ≤
∫ a

0

G(t) dt ≤
∫ ∞
0

G(t) dt,

which means
aPr(X ≥ a) ≤ E[X]

(d) Assume
X = (Y − E[Y ])2 X ≥ 0

Using part (c), we have
aPr(X ≥ a) ≤ E[X].

Therefore, one could conclude that

aPr
(
(Y − E[Y ])2 ≥ a

)
≤ E

(
(Y − E[Y ])2

)
.

Setting b =
√
a, we have

Pr
(
|Y − E[Y ]| ≥ b

)
= Pr

(
(Y − E[Y ])2 ≥ b2

)
≤
E
(
(Y − E[Y ])2

)
b2

=
σ2
Y

b2
.

Problem 3.
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(a) Pr(X1 ≤ X2) = 1
2
. We know because of independence we have, fX1,X2(x1, x2) =

fX1(x1)fX2(x2), and we want to find the probability of x1 being minimum of two.
This event partitions the probability space into two equal sub-sets, the other one is x2
being the minimum of the two. The only problem is the boundary line x1 = x2, which
we assume is a part of first sub-set, but because fx is a continuous random variable the
line x1 = x2 has zero probability mass and because fX1(x1)fX2(x2) is symmetric with
respect to the line x1 = x2, we conclude that the event min(x1, x2) = x1 partitions
the whole probability space into two equally probable regions.

(b) Pr(X1 ≤ X2;X1 ≤ X3) = 1
3
; We follow the exact same argument as the part (a), this

time the probability space is partitioned into three equally probable sub-sets, in each
of sub-sets one of the three random variable is minimum.

(c) Similar to last parts, we can show that

Pr(X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1;X1 ≤ Xn) =
1

n

and

Pr(X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1) =
1

n− 1

We know

Pr(N = n) = Pr(X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1;X1 > Xn) (24)

= Pr(X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1)

−Pr(X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1;X1 ≤ Xn) (25)

=
1

n− 1
− 1

n
=

1

n2 − n
. n > 1 (26)

Using properties of telescopic series, we conclude

Pr(N ≥ n) =
∞∑

m=n

Pr(N = m) (27)

=
1

n− 1
− 1

n
+

1

n
− 1

n+ 1
+ . . . (28)

=
1

n− 1
. n ≥ 2 (29)

(d) We use part (a) of Problem 2.

E(N) =
∑
n>0

Pr(N ≥ n) =
∑
n>1

1

n− 1
→∞

(We know that series 1
n

is divergent.)

(e) The symmetry of the fX1(x1)fX2(x2) still holds because of independence but in the
discrete case it is possible to put some probability mass on the line x1 = x2. Therefore
in the discrete case the event x1 ≤ x2 does not partition the whole probability space
into two equally probable sub-spaces. The same as before we can conclude that
Pr(X1 < X2) = Pr(X2 < X1). We know Pr(X1 < X2) + Pr(X1 = X2) + Pr(X2 <
X1) = 1. From these two we conclude that Pr(X1 ≤ X2) ≥ 1

2
. Similarly we conclude

that

Pr(X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1;X1 ≤ Xn) ≥ 1

n
.
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Following the steps in part (d), we can show that

E(N) ≥
∑
n>1

1

n− 1
→∞

Problem 4. Let’s consider the case where n = 2 first, we have

P (Z = 0) = P (X1 ⊕X2 = 0) = P (X1 = 0, X2 = 0) + P (X1 = 1, X2 = 1) =
1

2
,

in which we used independence of X1 and X2.
By induction, one could easily show that for arbitrary n, we have

P (Z = 0) =
1

2
.

(a)

P (Z = z|X1 = x1) = P (X1 ⊕X2 ⊕ · · · ⊕Xn = z|X1 = x1) (30)

= P (X2 ⊕ · · · ⊕Xn = z ⊕ x1|X1 = x1) (31)

= P (X2 ⊕ · · · ⊕Xn = z ⊕ x1) (32)

=
1

2
= P (Z = z) (33)

in (32) we used that Xi’s are independent. We conclude that Z is independent of X1

(b)

P (Z = z|X1, . . . , Xn−1 = x1, . . . , xn−1) = (34)

P (X1 ⊕X2 ⊕ · · · ⊕Xn = z|X1, . . . , Xn−1 = x1, . . . , xn−1) = (35)

P (Xn = z ⊕ x1 ⊕ · · · ⊕ xn−1|X1, . . . , Xn−1 = x1, . . . , xn−1) = (36)

P (Xn = z ⊕ x1 ⊕ · · · ⊕ xn−1) = (37)

=
1

2
(38)

= P (Z = z) (39)

in (37) we used that Xi’s are independent. We conclude that Z is independent of
X1, . . . , Xn−1.

(c) No, Z is a deterministic function of X1, . . . , Xn, which means

P (Z = z|X1, . . . , Xn = x1, . . . , xn)

is either 0 or 1 depending on the values of x1, . . . , xn and z.

(d) Suppose Pr(Xi = 1) = 3
4
, we have

P (Z = 0) = P (X1⊕X2 = 0) = P (X1 = 0, X2 = 0)+P (X1 = 1, X2 = 1) =
9 + 1

16
=

5

8
.

but

P (Z = 0|X1 = 0) = P (X1 ⊕X2 = 0|X1 = 0) (40)

= P (X2 = 0|X1 = 0) (41)

=
1

4
6= 5

8
= P (Z = 0), (42)

in which we used that X1 and X2 are independent. We conclude that Z is not
independent of X1.
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Problem 5. (1) Let D0, D1 be the MAP decision regions for hypotheses 0 and 1 when
the a-priori probabilities are (π0, 1 − π0). Similarly, let D′0, D

′
1 be the MAP deci-

sion regions for hypotheses 0 and 1 when the a-priori probabilities are (π′0, 1 − π′0),
and D′′0 , D

′′
1 be the MAP decision regions for hypotheses 0 and 1 when the a-priori

probabilities are (π′′0 , 1− π′′0), where π′′0 = λπ0 + (1− λ)π′0. Thus

V (π0) = π0p0(D1) + (1− π0)p1(D0),

V (π′0) = π0p0(D
′
1) + (1− π0)p1(D′0),

V (π′′0) = π0p0(D
′′
1) + (1− π0)p1(D′′0),

(2) Since the MAP rule minimizes the error probability, using any other decision regions
in any of the above will increase the probability of error. So,

V (π0) ≤ π0p0(D
′′
1) + (1− π0)p1(D′′0),

V (π′0) ≤ π′0p0(D
′′
1) + (1− π′0)p1(D′′0).

Multiplying the first by λ and the second by (1 − λ) and adding we get the desired
result:

λV (π0) + (1− λ)V (π′0) ≤ (λπ0 + (1− λ)π′0)p0(D
′′
1)

+(1− (λπ0 + (1− λ)π′0))p1(D
′′
0)

= V (λπ0 + (1− λ)π′0) (43)

Problem 6. We define
C(xi) = 2σ2 log Pr(xi)

It is easy to show that for the optimal decision maker (MAP) in Gaussian noise, the detector
finds xi so that

〈xi, xi〉 − 2〈y, xi〉 − C(xi)

is minimized.
We know the following for any j 6= i

〈xi, xi〉 − 2〈y1, xi〉 − C(xi) ≤ 〈xj, xj〉 − 2〈y1, xj〉 − C(xj) (44)

〈xi, xi〉 − 2〈y2, xi〉 − C(xi) ≤ 〈xj, xj〉 − 2〈y2, xj〉 − C(xj). (45)

Now let us consider the following,

〈xi, xi〉 − 2〈αy1 + (1− α)y2, xi〉 − C(xi) = 〈xi, xi〉 − 2α〈y1, xi〉
−2(1− α)〈y2, xi〉 − C(xi)

= α
[
〈xi, xi〉 − 2〈y1, xi〉 − C(xi)

]
+

(1− α)
[
〈xi, xi〉 − 2〈y2, xi〉 − C(xi)

]
≤ α

[
〈xj, xj〉 − 2〈y1, xj〉 − C(xj)

]
+

(1− α)
[
〈xj, xj〉 − 2〈y2, xj〉 − C(xj)

]
.

In the last step we used 44 and 45. We conclude

〈xi, xi〉 − 2〈αy1 + (1− α)y2, xi〉 − C(xi) ≤ 〈xj, xj〉 − 2〈αy1 + (1− α)y2, xj〉 − C(xj)

for all j 6= i. Therefore, the decoder decodes αy1 + (1− α)y2 as xi.
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