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PROBLEM 1. pyw (v, w).

(a)

()

BV W) = [0+ wmnto,w) oo 1)

= (vpyw (v, w) + wpyw (v, w)) dv dw (2)
/!

— //vpvw(v,w) dvdw—l—//wpvw(%’w) dv dw (3)
= /U/pvw(v,w) dwdv+/w/pvw(v,w) dv dw (4)

= [oneydo s [ wplw) do (5)
= E[V]+EW] (6)
E[V-W] = //(U-w)pvw(v,w)dvdw (7)
~ [[w v dvdu (®)

= /vpv(v) dv-/’wpw(w) dw (9)

— E[V]-EW] (10)

Assume V = W and Pr(V = 1) = Pr(V = —1) = 1. We compute E[V] = E[W] =0
and E[VW]| =1, so E[VW]| # E[V]E[W]

Now suppose (V, W) takes values of (1,1),(1,-1),(—1,1),(—1,—1),(0,0) with equal
probability £. Because Pr(W = 0|V = 1) =0 # & = Pr(W 0), V and W are
not independent. We compute E[V] = E[W]| = 0 and E[VW] = 0, so E[VW] =

EVIEW]

Assume that V and W are independent and let o3, and o3, be the variances of V and
W, respectively. Show that the variance of V + W is given by o7, = 0% + o3

ov.w = E[(V+W)?]-EV+W] (11
= E[VY+ E[W? 4+ 2E[VW] — (E[V] + E[W])’ (12
= E[V3+ EW?* +2E[V]|E[W] — E[V])> — EW])* - 2E[V|E[W] (13
= E[V - E[V]*+EW? - E[W]? (14

(

= ot +oy 15
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PROBLEM 2.

(a)
Y Pr(N=n) = Y ) Pr(N=m) (16)

= ) ) Pr(N=m) (17)

= ) mPr(N =m) (18)

_ BV (19)

(b)

/000 Pr(z > a)da = /000 /OO fz(t)dtda (20)

_ /OOO /Ot £.(t) da dt (21)

= / T fa(t) dt (22)

= E[X] (23)

(¢) The main point is to note that G(t) = P(X > t) is a non-increasing function of t.
So for any fixed value of a > 0, the rectangle between point (0,0) and (a, G(a)) lies
below the function G(t). In conclusion, it follows from the discussion above that

aGla) < /0 " Gla)dt < /0 Gy dt < /O TGy,

which means
aPr(X >a) < E[X]

(d) Assume
X=( -E[Y])? X>0

Using part (c), we have
aPr(X >a) < F[X].

Therefore, one could conclude that
aPr((Y — BY]P > a) < B((Y — E[Y))?).
Setting b = \/a, we have

E((Y - EY])?) oy
2 2

Pr(|Y — E[Y]| > b) = Pr((Y — E[Y])? > b°) <

PROBLEM 3.



(a)

(d)

()

Pr(X; < Xy) = % We know because of independence we have, fx, x,(x1,22) =
fx,(z1) fx,(x2), and we want to find the probability of x; being minimum of two.
This event partitions the probability space into two equal sub-sets, the other one is -
being the minimum of the two. The only problem is the boundary line xy = x5, which
we assume is a part of first sub-set, but because f, is a continuous random variable the
line 21 = x5 has zero probability mass and because fx, (x1)fx,(z2) is symmetric with
respect to the line x; = x5, we conclude that the event min(xy,xz2) = x; partitions

the whole probability space into two equally probable regions.

Pr(X; < Xp; X; < X3) = 1; We follow the exact same argument as the part (a), this
time the probability space is partitioned into three equally probable sub-sets, in each
of sub-sets one of the three random variable is minimum.

Similar to last parts, we can show that
1
Pr(X; < Xp; X1 < X33 X0 <X 3 X1 < X,,) = —
n
and

1
n—1

Pr(X; < X5 Xh < X5;...,X1 <X,q) =
We know

PI'(N = n) = PI'(X1 < XQ;Xl < Xg, . ,X1 < Xn—l;Xl > Xn) (24)
Pr(X; < Xo; X7 < Xs;...5X1 < X,9)
—Pr(X; < Xo; Xi < X35 X0 <X, 3 X1 < X,) (25)
1 1 1

Using properties of telescopic series, we conclude

Pr(N >n) = E Pr(N =m) (27)
_1 1 1 1
= - — 4+ —— 2
n—1 n+n n+1+ (28)
- > 2 (29)
 on—1 "=

We use part (a) of Problem 2.

1
E(N):E Pr(NZn):E g
n>0 n>1

(We know that series + is divergent.)

The symmetry of the fx,(x1)fx,(z2) still holds because of independence but in the
discrete case it is possible to put some probability mass on the line x; = 5. Therefore
in the discrete case the event x; < x5 does not partition the whole probability space
into two equally probable sub-spaces. The same as before we can conclude that
Pr(X; < X3) = Pr(X, < X7). We know Pr(X; < X3) + Pr(X; = Xy) + Pr(Xs <
X;) = 1. From these two we conclude that Pr(X; < X5) > % Similarly we conclude
that

PriX; < Xo; Xi <X X0 <X, X1 < X,) >

S



Following the steps in part (d), we can show that

E(N)zzniléoo

n>1

PROBLEM 4. Let’s consider the case where n = 2 first, we have

P(Z:O):P(Xl@XQZO):P(Xl:O,XQZO)+P(X1:1,X2:1):—

in which we used independence of X; and Xs.
By induction, one could easily show that for arbitrary n, we have

(a)

(b)

PZ=zXi=2) = PXi®Xo® X, =2|X, =) (30)
= P(Xe® - ®X,=20m|X; =) (31)
= P(X2® -0 X,=201) (32)

1

in (32) we used that X;’s are independent. We conclude that Z is independent of X,

P(Z:Z|X1,...,Xn 1 =L1y...,Tp— 1) ( )
P(Xl@XQ@@Xn:Z’Xl,,Xn 1 =Ty, Tp— 1) ( )
P(Xn:z@xl@---@xn_1|X1,...,Xn1:x , Lp— 1) = (36)

PXp=2®x1& @ Tn1) (37)
1
; (3)
= P(Z=2z) (39)
in (37) we used that X,’s are independent. We conclude that Z is independent of
X17 Ce 7Xn71-
No, Z is a deterministic function of X,..., X,,, which means
P(Z =zXy,..., Xp=21,...,2,)
is either 0 or 1 depending on the values of zy, ..., 2, and z.

Suppose Pr(X; = 1) = 3, we have

941 5
P(Z =0) = P(X;6X> = 0) = P(X; = 0, X5 = 0)4P(X; = 1, Xy — 1) = 1+—6 -
but
P(Z=0X,=0) = P(X,&X,=0|X,=0) (40)
1 5
= —#4£-=P(Z =0 42
LAY =Pz=0) (42)

in which we used that X; and X, are independent. We conclude that Z is not
independent of X;.



PROBLEM 5. (1) Let Dg, D; be the MAP decision regions for hypotheses 0 and 1 when
the a-priori probabilities are (mp, 1 — mp). Similarly, let Dy, D} be the MAP deci-
sion regions for hypotheses 0 and 1 when the a-priori probabilities are (7,1 — ),
and D{, D] be the MAP decision regions for hypotheses 0 and 1 when the a-priori
probabilities are (7,1 — 7)), where m) = Amg + (1 — X\)m,. Thus

V(7o) = mopo(D1) + (1 — mo)p1 (Do),

V(mg) = mopo(Dy) + (1 —m0)p1(Dp),
V(mg) = mopo(DY) + (1 — mo)p1(Dp),

(2) Since the MAP rule minimizes the error probability, using any other decision regions
in any of the above will increase the probability of error. So,

V(mo) < mopo(DY) + (1 = mo)p1(Dy),
V(o) < mopo(DY) + (1 — 7)p1(Dp).-

Multiplying the first by A and the second by (1 — A) and adding we get the desired
result:

AV (mo) + (1= NV(m) < (Amo+ (1= N)mp)po(DY)
+(1 = (Amo + (1 — A)mg))p1 (Dy)
= V(Amo+ (1= \)mp) (43)
PRrROBLEM 6. We define
C(z;) = 20*log Pr(z;)

It is easy to show that for the optimal decision maker (MAP) in Gaussian noise, the detector
finds x; so that

(i, ) — 2{y, ;) — C(y)
is minimized.
We know the following for any j # i
<'Ti7 xl) - 2<y1> 'CEZ) - O(xl)
(@i, i) — 2(y2, 23) — C(z3)

Now let us consider the following,

(zj,25) — 2(y1, z5) — C(x5) (44)
(x5, 25) — 2(y2, ;) — C(x;). (45)

IAINA

(i, xi) — 2(ays + (1 — @)yo, i) — Clxi) = (@i, 1) — 20y, x;)
—2(1 — a)(y2, 7;) — C(x;)
= a[(xi,:vi) — 2(y1, ;) — C’(:L'@)] +
(1= o) [(i, z3) — 2(ya, 23) — C()]
al(zj, x5) = 2y, x5) — Clxy)] +
(1= a) [{z), 25) = 2(y2, 75) — Clxy)].

IA

In the last step we used 44 and 45. We conclude
(i, i) = 2(ays + (1 = a)yz, @) — Clx) < (x5, 75) — 2{ay + (1 — a)ys, z;) — Clay)

for all j # i. Therefore, the decoder decodes ay; + (1 — a)ys as z;.



