ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Problem 1. $p_{V W}(v, w)$.
(a)

$$
\begin{align*}
E[V+W] & =\iint(v+w) p_{V W}(v, w) d v d w \tag{1}\\
& =\iint\left(v p_{V W}(v, w)+w p_{V W}(v, w)\right) d v d w \tag{2}\\
& =\iint v p_{V W}(v, w) d v d w+\iint w p_{V W}(v, w) d v d w \tag{3}\\
& =\int v \int p_{V W}(v, w) d w d v+\int w \int p_{V W}(v, w) d v d w \tag{4}\\
& =\int v p_{V}(v) d v+\int w p_{W}(w) d w \tag{5}\\
& =E[V]+E[W] \tag{6}
\end{align*}
$$

(b)

$$
\begin{align*}
E[V \cdot W] & =\iint(v \cdot w) p_{V W}(v, w) d v d w \tag{7}\\
& =\iint(v \cdot w) p_{V}(v) p_{W}(w) d v d w \tag{8}\\
& =\int v p_{V}(v) d v \cdot \int w p_{W}(w) d w \tag{9}\\
& =E[V] \cdot E[W] \tag{10}
\end{align*}
$$

(c) Assume $V=W$ and $\operatorname{Pr}(V=1)=\operatorname{Pr}(V=-1)=\frac{1}{2}$. We compute $E[V]=E[W]=0$ and $E[V W]=1$, so $E[V W] \neq E[V] E[W]$
Now suppose (V, W) takes values of $(1,1),(1,-1),(-1,1),(-1,-1),(0,0)$ with equal probability $\frac{1}{5}$. Because $\operatorname{Pr}(W=0 \mid V=1)=0 \neq \frac{1}{5}=\operatorname{Pr}(W=0), V$ and W are not independent. We compute $E[V]=E[W]=0$ and $E[V W]=0$, so $E[V W]=$ $E[V] E[W]$
(d) Assume that V and W are independent and let σ_{V}^{2} and σ_{W}^{2} be the variances of V and W, respectively. Show that the variance of $V+W$ is given by $\sigma_{V+W}^{2}=\sigma_{V}^{2}+\sigma_{W}^{2}$.

$$
\begin{align*}
\sigma_{V+W}^{2} & =E\left[(V+W)^{2}\right]-E[V+W]^{2} \tag{11}\\
& =E\left[V^{2}\right]+E\left[W^{2}\right]+2 E[V W]-(E[V]+E[W])^{2} \tag{12}\\
& =E\left[V^{2}\right]+E\left[W^{2}\right]+2 E[V] E[W]-E[V]^{2}-E[W]^{2}-2 E[V] E[W] \tag{13}\\
& =E\left[V^{2}\right]-E[V]^{2}+E\left[W^{2}\right]-E[W]^{2} \tag{14}\\
& =\sigma_{V}^{2}+\sigma_{W}^{2} \tag{15}
\end{align*}
$$

Problem 2.

(a)

$$
\begin{align*}
\sum_{n>0} \operatorname{Pr}(N \geq n) & =\sum_{n=1}^{\infty} \sum_{m=n}^{\infty} \operatorname{Pr}(N=m) \tag{16}\\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{m} \operatorname{Pr}(N=m) \tag{17}\\
& =\sum_{m=1}^{\infty} m \operatorname{Pr}(N=m) \tag{18}\\
& =E[N] \tag{19}
\end{align*}
$$

(b)

$$
\begin{align*}
\int_{0}^{\infty} \operatorname{Pr}(x \geq a) d a & =\int_{0}^{\infty} \int_{a}^{\infty} f_{x}(t) d t d a \tag{20}\\
& =\int_{0}^{\infty} \int_{0}^{t} f_{x}(t) d a d t \tag{21}\\
& =\int_{0}^{\infty} t f_{x}(t) d t \tag{22}\\
& =E[X] \tag{23}
\end{align*}
$$

(c) The main point is to note that $G(t)=P(X \geq t)$ is a non-increasing function of t. So for any fixed value of $a>0$, the rectangle between point $(0,0)$ and $(a, G(a))$ lies below the function $G(t)$. In conclusion, it follows from the discussion above that

$$
a G(a) \leq \int_{0}^{a} G(a) d t \leq \int_{0}^{a} G(t) d t \leq \int_{0}^{\infty} G(t) d t
$$

which means

$$
a \operatorname{Pr}(X \geq a) \leq E[X]
$$

(d) Assume

$$
X=(Y-E[Y])^{2} \quad X \geq 0
$$

Using part (c), we have

$$
a \operatorname{Pr}(X \geq a) \leq E[X]
$$

Therefore, one could conclude that

$$
a \operatorname{Pr}\left((Y-E[Y])^{2} \geq a\right) \leq E\left((Y-E[Y])^{2}\right)
$$

Setting $b=\sqrt{a}$, we have

$$
\operatorname{Pr}(|Y-E[Y]| \geq b)=\operatorname{Pr}\left((Y-E[Y])^{2} \geq b^{2}\right) \leq \frac{E\left((Y-E[Y])^{2}\right)}{b^{2}}=\frac{\sigma_{Y}^{2}}{b^{2}}
$$

Problem 3.

(a) $\operatorname{Pr}\left(X_{1} \leq X_{2}\right)=\frac{1}{2}$. We know because of independence we have, $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=$ $f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$, and we want to find the probability of x_{1} being minimum of two. This event partitions the probability space into two equal sub-sets, the other one is x_{2} being the minimum of the two. The only problem is the boundary line $x_{1}=x_{2}$, which we assume is a part of first sub-set, but because f_{x} is a continuous random variable the line $x_{1}=x_{2}$ has zero probability mass and because $f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$ is symmetric with respect to the line $x_{1}=x_{2}$, we conclude that the event $\min \left(x_{1}, x_{2}\right)=x_{1}$ partitions the whole probability space into two equally probable regions.
(b) $\operatorname{Pr}\left(X_{1} \leq X_{2} ; X_{1} \leq X_{3}\right)=\frac{1}{3}$; We follow the exact same argument as the part (a), this time the probability space is partitioned into three equally probable sub-sets, in each of sub-sets one of the three random variable is minimum.
(c) Similar to last parts, we can show that

$$
\operatorname{Pr}\left(X_{1} \leq X_{2} ; X_{1} \leq X_{3} ; \ldots ; X_{1} \leq X_{n-1} ; X_{1} \leq X_{n}\right)=\frac{1}{n}
$$

and

$$
\operatorname{Pr}\left(X_{1} \leq X_{2} ; X_{1} \leq X_{3} ; \ldots ; X_{1} \leq X_{n-1}\right)=\frac{1}{n-1}
$$

We know

$$
\begin{align*}
\operatorname{Pr}(N=n)= & \operatorname{Pr}\left(X_{1} \leq X_{2} ; X_{1} \leq X_{3} ; \ldots ; X_{1} \leq X_{n-1} ; X_{1}>X_{n}\right) \tag{24}\\
= & \operatorname{Pr}\left(X_{1} \leq X_{2} ; X_{1} \leq X_{3} ; \ldots ; X_{1} \leq X_{n-1}\right) \\
& \quad-\operatorname{Pr}\left(X_{1} \leq X_{2} ; X_{1} \leq X_{3} ; \ldots ; X_{1} \leq X_{n-1} ; X_{1} \leq X_{n}\right) \tag{25}\\
= & \frac{1}{n-1}-\frac{1}{n}=\frac{1}{n^{2}-n} . \quad n>1 \tag{26}
\end{align*}
$$

Using properties of telescopic series, we conclude

$$
\begin{align*}
\operatorname{Pr}(N \geq n) & =\sum_{m=n}^{\infty} \operatorname{Pr}(N=m) \tag{27}\\
& =\frac{1}{n-1}-\frac{1}{n}+\frac{1}{n}-\frac{1}{n+1}+\ldots \tag{28}\\
& =\frac{1}{n-1} . \quad n \geq 2 \tag{29}
\end{align*}
$$

(d) We use part (a) of Problem 2.

$$
E(N)=\sum_{n>0} \operatorname{Pr}(N \geq n)=\sum_{n>1} \frac{1}{n-1} \rightarrow \infty
$$

(We know that series $\frac{1}{n}$ is divergent.)
(e) The symmetry of the $f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$ still holds because of independence but in the discrete case it is possible to put some probability mass on the line $x_{1}=x_{2}$. Therefore in the discrete case the event $x_{1} \leq x_{2}$ does not partition the whole probability space into two equally probable sub-spaces. The same as before we can conclude that $\operatorname{Pr}\left(X_{1}<X_{2}\right)=\operatorname{Pr}\left(X_{2}<X_{1}\right)$. We know $\operatorname{Pr}\left(X_{1}<X_{2}\right)+\operatorname{Pr}\left(X_{1}=X_{2}\right)+\operatorname{Pr}\left(X_{2}<\right.$ $\left.X_{1}\right)=1$. From these two we conclude that $\operatorname{Pr}\left(X_{1} \leq X_{2}\right) \geq \frac{1}{2}$. Similarly we conclude that

$$
\operatorname{Pr}\left(X_{1} \leq X_{2} ; X_{1} \leq X_{3} ; \ldots ; X_{1} \leq X_{n-1} ; X_{1} \leq X_{n}\right) \geq \frac{1}{n}
$$

Following the steps in part (d), we can show that

$$
E(N) \geq \sum_{n>1} \frac{1}{n-1} \rightarrow \infty
$$

Problem 4. Let's consider the case where $n=2$ first, we have

$$
P(Z=0)=P\left(X_{1} \oplus X_{2}=0\right)=P\left(X_{1}=0, X_{2}=0\right)+P\left(X_{1}=1, X_{2}=1\right)=\frac{1}{2}
$$

in which we used independence of X_{1} and X_{2}.
By induction, one could easily show that for arbitrary n, we have

$$
P(Z=0)=\frac{1}{2} .
$$

(a)

$$
\begin{align*}
P\left(Z=z \mid X_{1}=x_{1}\right) & =P\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}=z \mid X_{1}=x_{1}\right) \tag{30}\\
& =P\left(X_{2} \oplus \cdots \oplus X_{n}=z \oplus x_{1} \mid X_{1}=x_{1}\right) \tag{31}\\
& =P\left(X_{2} \oplus \cdots \oplus X_{n}=z \oplus x_{1}\right) \tag{32}\\
& =\frac{1}{2}=P(Z=z) \tag{33}
\end{align*}
$$

in (32) we used that X_{i} 's are independent. We conclude that Z is independent of X_{1}
(b)

$$
\begin{align*}
P\left(Z=z \mid X_{1}, \ldots, X_{n-1}=x_{1}, \ldots, x_{n-1}\right) & = \tag{34}\\
P\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}=z \mid X_{1}, \ldots, X_{n-1}=x_{1}, \ldots, x_{n-1}\right) & = \tag{35}\\
P\left(X_{n}=z \oplus x_{1} \oplus \cdots \oplus x_{n-1} \mid X_{1}, \ldots, X_{n-1}=x_{1}, \ldots, x_{n-1}\right) & = \tag{36}\\
P\left(X_{n}=z \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right) & = \tag{37}\\
& =\frac{1}{2} \tag{38}\\
& =P(Z=z) \tag{39}
\end{align*}
$$

in (37) we used that X_{i} 's are independent. We conclude that Z is independent of X_{1}, \ldots, X_{n-1}.
(c) No, Z is a deterministic function of X_{1}, \ldots, X_{n}, which means

$$
P\left(Z=z \mid X_{1}, \ldots, X_{n}=x_{1}, \ldots, x_{n}\right)
$$

is either 0 or 1 depending on the values of x_{1}, \ldots, x_{n} and z.
(d) Suppose $\operatorname{Pr}\left(X_{i}=1\right)=\frac{3}{4}$, we have

$$
P(Z=0)=P\left(X_{1} \oplus X_{2}=0\right)=P\left(X_{1}=0, X_{2}=0\right)+P\left(X_{1}=1, X_{2}=1\right)=\frac{9+1}{16}=\frac{5}{8} .
$$

but

$$
\begin{align*}
P\left(Z=0 \mid X_{1}=0\right) & =P\left(X_{1} \oplus X_{2}=0 \mid X_{1}=0\right) \tag{40}\\
& =P\left(X_{2}=0 \mid X_{1}=0\right) \tag{41}\\
& =\frac{1}{4} \neq \frac{5}{8}=P(Z=0), \tag{42}
\end{align*}
$$

in which we used that X_{1} and X_{2} are independent. We conclude that Z is not independent of X_{1}.

Problem 5. (1) Let D_{0}, D_{1} be the MAP decision regions for hypotheses 0 and 1 when the a-priori probabilities are $\left(\pi_{0}, 1-\pi_{0}\right)$. Similarly, let $D_{0}^{\prime}, D_{1}^{\prime}$ be the MAP decision regions for hypotheses 0 and 1 when the a-priori probabilities are ($\pi_{0}^{\prime}, 1-\pi_{0}^{\prime}$), and $D_{0}^{\prime \prime}, D_{1}^{\prime \prime}$ be the MAP decision regions for hypotheses 0 and 1 when the a-priori probabilities are $\left(\pi_{0}^{\prime \prime}, 1-\pi_{0}^{\prime \prime}\right)$, where $\pi_{0}^{\prime \prime}=\lambda \pi_{0}+(1-\lambda) \pi_{0}^{\prime}$. Thus

$$
\begin{aligned}
V\left(\pi_{0}\right) & =\pi_{0} p_{0}\left(D_{1}\right)+\left(1-\pi_{0}\right) p_{1}\left(D_{0}\right), \\
V\left(\pi_{0}^{\prime}\right) & =\pi_{0} p_{0}\left(D_{1}^{\prime}\right)+\left(1-\pi_{0}\right) p_{1}\left(D_{0}^{\prime}\right), \\
V\left(\pi_{0}^{\prime \prime}\right) & =\pi_{0} p_{0}\left(D_{1}^{\prime \prime}\right)+\left(1-\pi_{0}\right) p_{1}\left(D_{0}^{\prime \prime}\right),
\end{aligned}
$$

(2) Since the MAP rule minimizes the error probability, using any other decision regions in any of the above will increase the probability of error. So,

$$
\begin{aligned}
& V\left(\pi_{0}\right) \leq \pi_{0} p_{0}\left(D_{1}^{\prime \prime}\right)+\left(1-\pi_{0}\right) p_{1}\left(D_{0}^{\prime \prime}\right) \\
& V\left(\pi_{0}^{\prime}\right) \leq \pi_{0}^{\prime} p_{0}\left(D_{1}^{\prime \prime}\right)+\left(1-\pi_{0}^{\prime}\right) p_{1}\left(D_{0}^{\prime \prime}\right)
\end{aligned}
$$

Multiplying the first by λ and the second by $(1-\lambda)$ and adding we get the desired result:

$$
\begin{align*}
\lambda V\left(\pi_{0}\right)+(1-\lambda) V\left(\pi_{0}^{\prime}\right) \leq & \left(\lambda \pi_{0}+(1-\lambda) \pi_{0}^{\prime}\right) p_{0}\left(D_{1}^{\prime \prime}\right) \\
& +\left(1-\left(\lambda \pi_{0}+(1-\lambda) \pi_{0}^{\prime}\right)\right) p_{1}\left(D_{0}^{\prime \prime}\right) \\
= & V\left(\lambda \pi_{0}+(1-\lambda) \pi_{0}^{\prime}\right) \tag{43}
\end{align*}
$$

Problem 6. We define

$$
C\left(x_{i}\right)=2 \sigma^{2} \log \operatorname{Pr}\left(x_{i}\right)
$$

It is easy to show that for the optimal decision maker (MAP) in Gaussian noise, the detector finds x_{i} so that

$$
\left\langle x_{i}, x_{i}\right\rangle-2\left\langle y, x_{i}\right\rangle-C\left(x_{i}\right)
$$

is minimized.
We know the following for any $j \neq i$

$$
\begin{align*}
& \left\langle x_{i}, x_{i}\right\rangle-2\left\langle y_{1}, x_{i}\right\rangle-C\left(x_{i}\right) \leq\left\langle x_{j}, x_{j}\right\rangle-2\left\langle y_{1}, x_{j}\right\rangle-C\left(x_{j}\right) \tag{44}\\
& \left\langle x_{i}, x_{i}\right\rangle-2\left\langle y_{2}, x_{i}\right\rangle-C\left(x_{i}\right) \leq\left\langle x_{j}, x_{j}\right\rangle-2\left\langle y_{2}, x_{j}\right\rangle-C\left(x_{j}\right) . \tag{45}
\end{align*}
$$

Now let us consider the following,

$$
\begin{aligned}
\left\langle x_{i}, x_{i}\right\rangle-2\left\langle\alpha y_{1}+(1-\alpha) y_{2}, x_{i}\right\rangle-C\left(x_{i}\right)= & \left\langle x_{i}, x_{i}\right\rangle-2 \alpha\left\langle y_{1}, x_{i}\right\rangle \\
& -2(1-\alpha)\left\langle y_{2}, x_{i}\right\rangle-C\left(x_{i}\right) \\
= & \alpha\left[\left\langle x_{i}, x_{i}\right\rangle-2\left\langle y_{1}, x_{i}\right\rangle-C\left(x_{i}\right)\right]+ \\
& (1-\alpha)\left[\left\langle x_{i}, x_{i}\right\rangle-2\left\langle y_{2}, x_{i}\right\rangle-C\left(x_{i}\right)\right] \\
\leq & \alpha\left[\left\langle x_{j}, x_{j}\right\rangle-2\left\langle y_{1}, x_{j}\right\rangle-C\left(x_{j}\right)\right]+ \\
& (1-\alpha)\left[\left\langle x_{j}, x_{j}\right\rangle-2\left\langle y_{2}, x_{j}\right\rangle-C\left(x_{j}\right)\right] .
\end{aligned}
$$

In the last step we used 44 and 45 . We conclude

$$
\left\langle x_{i}, x_{i}\right\rangle-2\left\langle\alpha y_{1}+(1-\alpha) y_{2}, x_{i}\right\rangle-C\left(x_{i}\right) \leq\left\langle x_{j}, x_{j}\right\rangle-2\left\langle\alpha y_{1}+(1-\alpha) y_{2}, x_{j}\right\rangle-C\left(x_{j}\right)
$$

for all $j \neq i$. Therefore, the decoder decodes $\alpha y_{1}+(1-\alpha) y_{2}$ as x_{i}.

