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Problem 1.

(a) As Yk = hkx+ Zk, V = 〈g, Y 〉 =
∑

k g
∗
kYk equals γx+ Z with

γ =
∑

k

g∗khk = 〈g, h〉, and Z =
∑

k

g∗kZk.

Since Zk’s are independent circularly symmetric Gaussians, Z, being a linear combi-
nation of them, is also Gaussian and circularly symmetric. In particular, E[Z] = 0,
and

E
[
|Z|2

]
=
∑

k

|gk|2E
[
|Zk|2

]
=
∑

k

|gk|2σ2
k.

(b&c) By the Cauchy-Schwartz inequality |〈a, b〉|2 ≤ 〈a, a〉〈b, b〉. We thus have

|γ|2 =
∣∣∣∑

k

g∗khk

∣∣∣2 =
∣∣∣∑

k

(gkσk)∗(hk/σk)
∣∣∣2 ≤ (∑

k

|gk|2σ2
k

)(∑
k

|hk|2/σ2
k

)
and thus the ‘gain-to-noise ratio’ satisfies

|γ|2

E
[
|Z|2

] ≤∑
k

|hk|2

σ2
k

.

The equality in Cauchy-Schwartz inequality holds when a = b; in this case when
gkσk = hk/σk.

(d) Conditional on x, the random variables Yk are independent, and since Yk = hkx+Zk,

p(yk|x) =
1

πσ2
k

exp
(
− 1

σ2
k

|yk − hkx|2
)

As |yk − hkx| = |yk|2 − 2 Re{x∗h∗kyk}+ |hkx|2, we see that

p(y1, . . . , yK |x) =
1∏

k(πσ2
k)

exp
(
−
∑

k

|yk|2

σ2
k

)
× exp

(
2 Re

{
x∗
∑

k

h∗kyk

σ2
k

})
× exp

(
−
∑

k

|xhk|2

σ2
k

)
which is in the required form.

(e) V =
∑

k h
∗
kYk/σ

2
k is a sufficient statistic to estimate x. To show this we need to

demonstrate that p(x|y1, . . . , yK) is a function of x and v only. But

p(x|y) =
p(y|x)p(x)∫
p(y|x̃)p(x̃) dx̃

(Bayes rule)

=
a(y)b(Re{x∗v})c(x)p(x)

a(y)
∫
b(Re{x̃∗v})c(x̃)p(x̃) dx̃

(part (d))

=
b(Re{x∗v})c(x)p(x)∫
b(Re{x̃∗v})c(x̃)p(x̃) dx̃

as required.



Problem 2.

(a)

|Φ(f)|2 =

{
2T0 cos2(πfT0) |f |T0 < 1/2

0 else.

=

{
T0(1 + cos(2πfT0) |f |T0 < 1/2

0 else. f

|Φ(f)|2

1/2T0−1/2T0

2T0

Note, in particular, the symmetry around the point (1/(4T0), T0).

(b) The shifts of |Φ(f)|2 by multiples of 1/(2T0) sums to 2T0. Thus whenever T is an
integer multiple of 2T0 we get an orthonormal collection of φk’s. The smallest value
of T is thus 2T0.

(c) As y(t) =
∑

k xkψ(t − kT ) + z(t) with ψ(t) = φ(t) − 2φ(t − T ), the matched filter
output is

yk = (q ∗ x)k + zk

with qk = 〈ψ(t), ψ(t − kT )〉 and the noise spectra given by Q(D)N0/2. The inner
product in the expression of qk evaluates to

qk = 〈φ(t)− 2φ(t− T ), φ(t− kT )− 2φ(t− T − kT )〉
= δk − 2δk+1 − 2δk−1 + 4δk

=


5 k = 0

−2 k = −1, 1

0 else

and thus Q(D) = −2D−1 + 5− 2D.

(d) Observe that Q(D) = 4(1−D/2)(1− 1/(2D)). Choosing W (D) = −D/2
1−D/2

will ensure

that the poles of W (D) are outside the unit circle (hence W (D) is causal and stable)
and make Q(D)W (D) = 1 − 2D leaving a causal and stable filter. The factor D on
the numerator of W (D) has no effect on the whiteness of the output noise since it
signifies only a delay by one time unit.

(e) With the choice above H(D) = Q(D)W (D) = 1 − 2D; so h0 = 1, h1 = −2, and all
other hk equal zero. The noise z̃k is white with spectra N0/2Q(D)W (D)W (1/D∗)∗ =
N0/2, so z̃k has variance N0/2.

(f) As yk = xk−2xk−1 + z̃k, and since the receiver is provided with the value of xk−1, the
receiver can compute yk+2xk−1 = xk+z̃k from which to estimate xk. As xk belongs to
the binary constellation ±

√
A, the probability of an incorrect decision is the probabil-

ity that a Gaussian noise of variance N0/2 exceeds
√
A, which is Q(

√
2A/N0). (The

problem does not specify if the original noise z(t) is real or complex, the computation
here assumes real z(t).)
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Problem 3.

(a) The Fourier transform of sinc(t) is rect(f) — the function taking the value 1 or 0
according to |f | < 1/2 or not. As | rect(f)|2 = rect(f), its shifts by integers sum
to 1. Thus, we see that the collection {sinc(t − k)} forms an orthonormal set. In
particular, the sub-collection {sinc(t− 2k)} also forms an orthonormal collection.

(b) As ψ(t) = φ(t−1/2)+φ(t+1/2) = φ(t)∗ [δ(t−1/2)+δ(t+1/2)], its Fourier transform
is rect(f)2 cos(πf). Consequently |Ψ(f)|2 = 4 cos2(πf) on the interval |f | < 1/2 and
zero elsewhere, and has the same shape as in the figure in problem 2a. Its shifts by
integer multiples of 1/2 thus sum to 2, which means that the collection ψ(t− 2k) is
an orthogonal collection. (They are not orthonormal, but would have been if they
were scaled by 1/

√
2.)

(c) As y(t) =
∑

` x`ψ(t− 2`), the output of the receiver’s matched filter is∑
`

x`q(t− 2`)

where q(t) = ψ(t) ∗ ψ∗(−t). In particular, the output sampled at 2k + δ gives

yk =
∑

`

x`q(δ + 2(k − `))

which is of the form (q ∗ x)k with qk = q(δ + 2k). Since the Fourier transform of q(t)
is |Ψ(f)|2, by the hint we see that q(t) = 2 sinc(t)/(1− t2), in particular,

qk = 2
sinc(2k + δ)

1− (2k + δ)2
=

2 sin(πδ)

π(2k + δ)[1− (2k + δ)2]
.

(d) For k = 0, we see q0 = 2 sinc(δ)/(1 − δ2) ≈ 2. For k 6= 0, as |δ| � 1, we can bound,
|2k + δ| ≥ |k| and (2k + δ)2 − 1 > k2. Thus,

|qk| ≤
2

π
| sin(πδ)| 1

|k|3
,

so α = 2/π, β = 3 is a possible choice. For i.i.d. {xk}, the energy of the intersymbol-
interference term

∑
` 6=0 q`xk−` is

∑
`6=0 |q`|2E[|xk−`|2] = E

∑
` 6=0 |q`|2. Using the bound

on the |qk| above, we can upper bound this by

8E
π2

sin2(πδ)
∞∑

k=1

k−6.

The last sum can be upper bounded by 1 +
∫∞

1
t−6 dt = 6/5, yielding a bound of the

form (const)E sin2(πδ). The important thing to note from this computation is that
the variance of the additive error introduced to the signal due to the timing error is
proportional to the square of the timing error, and also proportional to the energy
of the signal. To ensure that the timing errors do not become the limiting factor of
our communication system by dominating the additive noise due to the channel (of
energy σ2), one should make sure that δ2E � σ2.
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