ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 20	Advanced Digital Communications
Homework 9	December 6, 2010

Problem 1.

(a) For the channel of problem 1, homework 8, show that the canonical factorization is

$$Q(D) + \frac{q_0}{\text{SNR}_{\text{MFB}}} = \gamma_0 (1 - r_2 D^{-1}) (1 - r_2^* D)$$

What is γ_0 in terms of a and b? Please do not do this from scratch. You have done much of the work for this in problem 2, HW7.

- (b) Find A(D) and W(D) for the MMSE DFE.
- (c) Give an expression for $\gamma_{\text{MMSE-DFE}}$ MMSE-DFE. Compute its values for a = 0, .5, 1 for the $E_x = 1$ and $\sigma^2 = 0.1$ Sketch $\gamma_{\text{MMSE-DFE}}$ as in problem 1, HW8. Compare with your sketches from problem 1, HW8.

Hint.

$$\gamma_{\rm MMSE-DFE} = 10 \log_{10} \frac{\rm SNR_{MFB}}{\rm SNR_{MMSE-DFE}}$$

Problem 2.

Consider the following discrete time channel:

$$y_k = x_k + x_{k-1} + z_k$$

where $\{z_k\}$ is i.i.d. gaussian with variance σ^2 and is independent of $\{x_k\}$. Moreover suppose that $\{x_k\}$, are independently and uniformly chosen from $\{A, -A\}$.

- (a) Find the optimal estimator $\hat{x}_k(y_k)$, an estimator that uses only the current channel output. Compute its error probability. Hint: Consider the cases $x_{k-1} = x_k$ and $x_{k-1} \neq x_k$ separately.
- (b) Find the optimal estimator $\hat{x}_{k}^{DFE}(y_{k}, \hat{x}_{k-1})$ that uses the previously estimated symbol to detect the last sent symbol, then:
 - (i) Find $Pr(\hat{x}_k \neq x_k)$ conditioned on $\hat{x}_{k-1} = x_{k-1}$
 - (ii) Find $Pr(\hat{x}_k \neq x_k)$ conditioned on $\hat{x}_{k-1} \neq x_{k-1}$
 - (iii) Find $Pr(\hat{x}_k \neq x_k)$ and compare it with the probability of error of the previous estimator.

PROBLEM 3. Consider the scalar discrete-time inter symbol interference channel,

$$y_k = \sum_{n=0}^{\nu} p_n x_{k-n} + z_k, \quad k = 0, \dots, N-1,$$
(1)

where $z_k \sim \mathbf{C}\mathcal{N}(0, \sigma_z^2)$ and is i.i.d., independent of $\{x_k\}$. Let us employ a cyclic prefix as done in OFDM, *i.e.*,

$$x_{-l} = x_{N-1-l}, \quad l = 0, \dots, \nu.$$

As done in class given the cyclic prefix,

$$\mathbf{y} = \begin{bmatrix} y_{N-1} \\ \vdots \\ y_0 \end{bmatrix} = \underbrace{\begin{bmatrix} p_0 & \dots & p_{\nu} & 0 & \dots & 0 & 0 \\ 0 & p_0 & \dots & p_{\nu-1} & p_{\nu} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \dots & 0 & p_0 & \dots & p_{\nu} \\ p_{\nu} & 0 & \dots & 0 & 0 & p_0 & \dots & p_{\nu-1} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \\ p_1 & \dots & p_{\nu} & 0 & \dots & 0 & 0 & p_0 \end{bmatrix}}_{\mathbf{P}} \underbrace{\begin{bmatrix} x_{N-1} \\ \vdots \\ x_0 \end{bmatrix}}_{\mathbf{x}} + \underbrace{\begin{bmatrix} z_{N-1} \\ \vdots \\ z_0 \end{bmatrix}}_{\mathbf{z}}. \quad (2)$$

In the derivation of OFDM we used the property that

$$\mathbf{P} = \mathbf{V}^* \mathbf{D} \mathbf{V},\tag{3}$$

where

$$\mathbf{V}_{p,q} = \frac{1}{\sqrt{N}} \exp\left(-j\frac{2\pi}{N}(p-1)(q-1)\right)$$

and \mathbf{D} is the diagonal matrix with

$$\mathbf{D}_{l,l} = d_l = \sum_{n=0}^{\nu} p_n e^{-j\frac{2\pi}{N}nl}$$

Using this we obtained

$$\mathbf{Y} = \mathbf{V}\mathbf{y} = \mathbf{D}\mathbf{X} + \mathbf{Z},$$

where $\mathbf{X} = \mathbf{V}\mathbf{x}$, $\mathbf{Z} = \mathbf{V}\mathbf{z}$. This yields the parallel channel result

$$\mathbf{Y}_l = d_l \mathbf{X}_l + \mathbf{Z}_l. \tag{4}$$

If the carrier synchronization is not accurate, then (1) gets modified as

$$y(k) = \sum_{n=0}^{\nu} e^{j2\pi f_0 k} p_n x_{k-n} + z_k, \quad k = 0, \dots, N-1$$
(5)

where f_0 is the carrier frequency offset. If we still use the cyclic prefix for transmission, then (2) gets modified as

$$\underbrace{\begin{bmatrix} y(N-1) \\ \vdots \\ y(0) \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} p_0 e^{j2\pi f_0(N-1)} & \dots & p_\nu e^{j2\pi f_0(N-1)} & 0 & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \ddots & \ddots & \ddots & \ddots & e^{j2\pi f_0\nu} p_0 & \dots & e^{j2\pi f_0\nu} p_\nu \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ e^{j2\pi f_0 0} p_1 & \dots & e^{j2\pi f_0 0} p_\nu & 0 & \dots & 0 & e^{j2\pi f_0 0} p_0 \end{bmatrix}}_{\mathbf{H}} \underbrace{\begin{bmatrix} x_{N-1} \\ \vdots \\ x_0 \end{bmatrix}}_{\mathbf{x}} + \underbrace{\begin{bmatrix} z_{N-1} \\ \vdots \\ z_0 \end{bmatrix}}_{\mathbf{x}} + \underbrace{\begin{bmatrix} z_{N-1} \\ z_0 \end{bmatrix}}_{\mathbf{x}} + \underbrace{\begin{bmatrix} z_{N-1} \\ z_0 \end{bmatrix}}_{\mathbf{x}} + \underbrace{\begin{bmatrix} z_{N-1} \\ z_$$

i.e.,

$$y = Hx + z$$

Note that

 $\mathbf{H}=\mathbf{SP},$

where **S** is a diagonal matrix with $\mathbf{S}_{l,l} = e^{j2\pi f_0(N-l)}$ and **P** is defined as in (2).

(a) Show that for $\mathbf{Y} = \mathbf{V}\mathbf{y}, \mathbf{X} = \mathbf{V}\mathbf{x}$,

$$\mathbf{Y} = \mathbf{G}\mathbf{X} + \mathbf{Z} \tag{7}$$

and prove that

$$\mathbf{G} = \mathbf{V}\mathbf{S}\mathbf{V}^*\mathbf{D}.$$

(b) If $f_0 \neq 0$, we see from part (a) that **G** is no longer a diagonal matrix and therefore we do not obtain the parallel channel result of (4). We get inter-carrier interference (ICI), *i.e.*, we have

$$\mathbf{Y}_{l} = \mathbf{G}_{l,l} \mathbf{X}_{l} + \underbrace{\sum_{q \neq l} \mathbf{G}(l,q) \mathbf{X}_{q} + \mathbf{Z}_{l}}_{\text{ICI + noise}}, \quad l = 0, \dots, N-1,$$

which shows that the other carriers interfere with \mathbf{X}_l . Compute the SINR (signalto-interference plus noise ratio). Assume $\{\mathbf{X}_l\}$ are i.i.d, with $\mathbb{E}|\mathbf{X}_l|^2 = \mathcal{E}_x$. You can compute the SINR for the particular l and leave the expression in terms of $\{G(l,q)\}$.

(c) Find the filter \mathbf{W}_l , such that the MMSE criterion is fulfilled,

$$\min_{\mathbf{W}_l} \mathbb{E} |\mathbf{W}_l^* \mathbf{Y} - \mathbf{X}_l|^2.$$

You can again assume that $\{\mathbf{X}_l\}$ are i.i.d with $\mathbb{E}|\mathbf{X}_l|^2 = \mathcal{E}_x$ and that the receiver knows **G**. You can now state the answer in terms of **G**.

(d) Find an expression for $\mathbf{G}_{l,q}$ in terms of $f_0, N, \{d_l\}$. Using Taylor series show that $\mathbf{G}_{l,q} \approx \theta c_{l,q}$ for small θ . What can you say about the ICI if $\theta \ll 1/N^2$?

Hint: Use the summation of the geometric series

$$\sum_{n=0}^{N-1} r^n = \frac{1-r^N}{1-r}.$$