ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 20
Advanced Digital Communications
Homework 9
December 6, 2010

Problem 1.

(a) For the channel of problem 1, homework 8, show that the canonical factorization is

$$
Q(D)+\frac{1}{\mathrm{SNR}_{\mathrm{MFB}}}=\gamma_{0}\left(1-r_{2} D^{-1}\right)\left(1-r_{2}^{*} D\right) .
$$

What is γ_{0} in terms of a and b ? Please do not do this from scratch. You have done much of the work for this in problem 1, HW8.
(b) Find $A(D)$ and $W(D)$ for the MMSE DFE.
(c) Give an expression for $\gamma_{\text {MMSE-DFE }}$ MMSE-DFE. Compute its values for $a=0, .5,1$ for the $E_{x}=1$ and $\sigma^{2}=0.1$ Sketch $\gamma_{\text {MMSE-DFE }}$ as in problem 1, HW8. Compare with your sketches from problem 1, HW8.
Hint.

$$
\gamma_{\mathrm{MMSE-DFE}}=10 \log _{10} \frac{\mathrm{SNR}_{\mathrm{MFB}}}{\mathrm{SNR}_{\mathrm{MMSE-DFE}}}
$$

Problem 2.

Consider the following discrete time channel:

$$
y_{k}=x_{k}+x_{k-1}+z_{k}
$$

where $\left\{z_{k}\right\}$ is i.i.d. gaussian with variance σ^{2} and is independent of $\left\{x_{k}\right\}$. Moreover suppose that $\left\{x_{k}\right\}$, are indepedently and uniformely chosen from $\{A,-A\}$.
(a) Find the optimal estimator $\hat{x}_{k}\left(y_{k}\right)$, an estimator that uses only the current channel output. Compute its error probability. Hint: Consider the cases $x_{k-1}=x_{k}$ and $x_{k-1} \neq x_{k}$ separately.
(b) Find the optimal estimator $\hat{x}_{k}^{D F E}\left(y_{k}, \hat{x}_{k-1}\right)$ that uses the previously estimated symbol to detect the last sent symbol, then:
(i) Find $\operatorname{Pr}\left(\hat{x}_{k} \neq x_{k}\right)$ conditioned on $\hat{x}_{k-1}=x_{k-1}$
(ii) Find $\operatorname{Pr}\left(\hat{x}_{k} \neq x_{k}\right)$ conditioned on $\hat{x}_{k-1} \neq x_{k-1}$
(iii) Find $\operatorname{Pr}\left(\hat{x}_{k} \neq x_{k}\right)$ and compare it with the probability of error of the previous estimator.

Problem 3. Consider the scalar discrete-time inter symbol interference channel,

$$
\begin{equation*}
y_{k}=\sum_{n=0}^{\nu} p_{n} x_{k-n}+z_{k}, \quad k=0, \ldots, N-1, \tag{1}
\end{equation*}
$$

where $z_{k} \sim \mathbf{C} \mathcal{N}\left(0, \sigma_{z}^{2}\right)$ and is i.i.d., independent of $\left\{x_{k}\right\}$. Let us employ a cyclic prefix as done in OFDM, i.e.,

$$
x_{-l}=x_{N-1-l}, \quad l=0, \ldots, \nu .
$$

As done in class given the cyclic prefix,

$$
\mathbf{y}=\left[\begin{array}{c}
y_{N-1} \tag{2}\\
\vdots \\
y_{0}
\end{array}\right]=\underbrace{\left[\begin{array}{cccccccc}
p_{0} & \ldots & \ldots & p_{\nu} & 0 & \ldots & 0 & 0 \\
0 & p_{0} & \ldots & p_{\nu-1} & p_{\nu} & 0 & \ldots & 0 \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \\
0 & \ldots & \ldots & 0 & p_{0} & \ldots & \ldots & p_{\nu} \\
p_{\nu} & 0 & \ldots & 0 & 0 & p_{0} & \ldots & p_{\nu-1} \\
& \ddots & \ddots & \ddots & \ddots & \ddots & & \\
p_{1} & \cdots & p_{\nu} & 0 & \ldots & 0 & 0 & p_{0}
\end{array}\right]}_{\mathbf{P}} \underbrace{\left[\begin{array}{c}
x_{N-1} \\
\vdots \\
x_{0}
\end{array}\right]}_{\mathbf{x}}+\underbrace{\left[\begin{array}{c}
z_{N-1} \\
\vdots \\
z_{0}
\end{array}\right]}_{\mathbf{z}} .
$$

In the derivation of OFDM we used the property that

$$
\begin{equation*}
\mathbf{P}=\mathbf{V}^{*} \mathbf{D V} \tag{3}
\end{equation*}
$$

where

$$
\mathbf{V}_{p, q}=\frac{1}{\sqrt{N}} \exp \left(-j \frac{2 \pi}{N}(p-1)(q-1)\right)
$$

and \mathbf{D} is the diagonal matrix with

$$
\mathbf{D}_{l, l}=d_{l}=\sum_{n=0}^{\nu} p_{n} e^{-j \frac{2 \pi}{N} n l} .
$$

Using this we obtained

$$
\mathbf{Y}=\mathbf{V} \mathbf{y}=\mathbf{D} \mathbf{X}+\mathbf{Z}
$$

where $\mathbf{X}=\mathbf{V x}, \mathbf{Z}=\mathbf{V z}$. This yields the parallel channel result

$$
\begin{equation*}
\mathbf{Y}_{l}=d_{l} \mathbf{X}_{l}+\mathbf{Z}_{l} . \tag{4}
\end{equation*}
$$

If the carrier synchronization is not accurate, then (1) gets modified as

$$
\begin{equation*}
y(k)=\sum_{n=0}^{\nu} e^{j 2 \pi f_{0} k} p_{n} x_{k-n}+z_{k}, \quad k=0, \ldots, N-1 \tag{5}
\end{equation*}
$$

where f_{0} is the carrier frequency offset. If we still use the cyclic prefix for transmission, then (2) gets modified as

$$
\underbrace{\left[\begin{array}{c}
y(N-1) \tag{6}\\
\cdot \\
. \\
y(0)
\end{array}\right]}_{\mathbf{y}}=\underbrace{\left[\begin{array}{ccccccc}
p_{0} e^{j 2 \pi f_{0}(N-1)} & \ldots & p_{\nu} e^{j 2 \pi f_{0}(N-1)} & 0 & \ldots & 0 & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots & & \\
0 & \ddots & \ddots & \ddots & e^{j 2 \pi f_{0} \nu p_{0}} & \ldots & e^{j 2 \pi f_{0} \nu_{p_{\nu}}} \\
\ddots \ddots & \ddots & \ddots & \ddots & \ddots & & \\
e^{j 2 \pi f_{0} p_{1}} & \cdots & e^{j 2 \pi f_{0} p_{\nu}} & 0 & \cdots & 0 & e^{j 2 \pi f_{0} 0_{0}}
\end{array}\right]}_{\mathbf{H}} \underbrace{\left[\begin{array}{c}
x_{N-1} \\
\vdots \\
x_{0}
\end{array}\right]}_{\mathbf{x}}+\underbrace{\left[\begin{array}{c}
z_{N-1} \\
\vdots \\
z_{0}
\end{array}\right]}_{\mathbf{z}}
$$

i.e.,

$$
\mathbf{y}=\mathbf{H x}+\mathbf{z}
$$

Note that

$$
\mathbf{H}=\mathbf{S P}
$$

where \mathbf{S} is a diagonal matrix with $\mathbf{S}_{l, l}=e^{j 2 \pi f_{0}(N-l)}$ and \mathbf{P} is defined as in (2).
(a) Show that for $\mathbf{Y}=\mathbf{V y}, \mathbf{X}=\mathbf{V} \mathbf{x}$,

$$
\begin{equation*}
\mathbf{Y}=\mathbf{G X}+\mathbf{Z} \tag{7}
\end{equation*}
$$

and prove that

$$
\mathbf{G}=\mathbf{V S V}^{*} \mathbf{D}
$$

(b) If $f_{0} \neq 0$, we see from part (a) that \mathbf{G} is no longer a diagonal matrix and therefore we do not obtain the parallel channel result of (4). We get inter-carrier interference (ICI), i.e., we have

$$
\mathbf{Y}_{l}=\mathbf{G}_{l, l} \mathbf{X}_{l}+\underbrace{\sum_{q \neq l} \mathbf{G}(l, q) \mathbf{X}_{q}+\mathbf{Z}_{l}, \quad l=0, \ldots, N-1,}_{\mathrm{ICI}+\text { noise }}
$$

which shows that the other carriers interfere with \mathbf{X}_{l}. Compute the SINR (signal-to-interference plus noise ratio). Assume $\left\{\mathbf{X}_{l}\right\}$ are i.i.d, with $\mathbb{E}\left|\mathbf{X}_{l}\right|^{2}=\mathcal{E}_{x}$. You can compute the SINR for the particular l and leave the expression in terms of $\{G(l, q)\}$.
(c) Find the filter \mathbf{W}_{l}, such that the MMSE criterion is fulfilled,

$$
\min _{\mathbf{W}_{l}} \mathbb{E}\left|\mathbf{W}_{l}^{*} \mathbf{Y}-\mathbf{X}_{l}\right|^{2}
$$

You can again assume that $\left\{\mathbf{X}_{l}\right\}$ are i.i.d with $\mathbb{E}\left|\mathbf{X}_{l}\right|^{2}=\mathcal{E}_{x}$ and that the receiver knows \mathbf{G}. You can now state the answer in terms of \mathbf{G}.
(d) Find an expression for $\mathbf{G}_{l, q}$ in terms of $f_{0}, N,\left\{d_{l}\right\}$. Using Taylor series show that $\mathbf{G}_{l, q} \approx \theta c_{l, q}$ for small θ. What can you say about the ICI if $\theta \ll 1 / N^{2}$?
Hint: Use the summation of the geometric series

$$
\sum_{n=0}^{N-1} r^{n}=\frac{1-r^{N}}{1-r}
$$

