ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Problem 1. Suppose we have a linear time invariant channel, i.e.,

$$
Y(D)=Q(D) X(D)+Z(D)
$$

with

$$
\begin{aligned}
S_{Z}(D) & =Q(D) N_{0} \\
Q(D) & =a^{*} D^{-1}+1+a a^{*}+a D \\
0 & \leq|a|<1
\end{aligned}
$$

(a) Find the zero forcing and minimum mean square error linear equalizers $W_{\text {ZFE }}(D)$ and $W_{\text {MMSE-LE }}(D)$. Use the variable $b=\left(q_{0}\right)\left(1+\frac{1}{\operatorname{SNR}_{\mathrm{MFB}}}\right)$ in your expression for $W_{\text {MMSE-LE }}(D)$.
Hint.

$$
\mathrm{SNR}_{\mathrm{MFB}}=\frac{q_{0} \mathcal{E}_{x}}{N_{0}}
$$

(b) By substituting $e^{-j 2 \pi \theta}=D$ and taking $\mathcal{E}_{x} / N_{0}=10$, use MATLAB to plot (for different values of $\theta) W\left(e^{j 2 \pi \theta}\right)$ for both ZFE and MMSE-LE for $a=.5$ and $a=.9$. Discuss the differences between the plots.
(c) Find the roots r_{1}, r_{2} of the polynomial

$$
a D^{2}+b D+a^{*}
$$

Show that $b^{2}-4 a a^{*}$ is always a real positive number (for $|a| \neq 1$).
Hint. Consider the case where $\frac{1}{\operatorname{SNR}_{\mathrm{MFB}}}=0$. Let r_{2} be the root for which $\left|r_{2}\right|<\left|r_{1}\right|$. Show that $r_{1} r_{2}^{*}=1$.
(d) Use the previous results to show that for the MMSE-LE

$$
W(D)=\frac{1}{a} \frac{D}{\left(D-r_{1}\right)\left(D-r_{2}\right)}=\frac{1}{a\left(r_{1}-r_{2}\right)}\left(\frac{r_{1}}{D-r_{1}}-\frac{r_{2}}{D-r_{2}}\right) .
$$

(e) Show that for the MMSE-LE, $w_{0}=\frac{1}{\sqrt{b^{2}-4 a a^{*}}}$. By taking $\frac{1}{\operatorname{SNR}_{\mathrm{MFB}}}=0$, show that for the ZFE, $w_{0}=\frac{1}{1-a a^{*}}$.
(f) For $\mathcal{E}_{x}=1$ and $\sigma^{2}=0.1$ find expressions for $\sigma_{\text {ZFE }}^{2}, \sigma_{\text {MMSE-LE }}^{2}, \gamma_{\text {ZFE }}$ and $\gamma_{\text {MMSE-LE }}$ Hint.

$$
\gamma_{\mathrm{ZFE}}=10 \log _{10} \frac{\mathrm{SNR}_{\mathrm{MFB}}}{\mathrm{SNR}_{\mathrm{ZFE}}}
$$

and

$$
\gamma_{\mathrm{MMSE-LE}}=10 \log _{10} \frac{\mathrm{SNR}_{\mathrm{MFB}}}{\mathrm{SNR}_{\mathrm{MMSE-LE}}}
$$

(g) Find γ_{ZFE} and $\gamma_{\mathrm{MMSE}-\mathrm{LE}}$ in terms of the parameter a and calculate for $a=0,0.5,1$. Sketch γ_{ZFE} and $\gamma_{\mathrm{MMSE}-\mathrm{LE}}$ for $0 \leq a<1$.

