ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 17	Advanced Digital Communications
Homework 8	November 29, 2010

PROBLEM 1. Suppose we have a linear time invariant channel, i.e.,

$$Y(D) = Q(D)X(D) + Z(D);$$

with

$$S_Z(D) = Q(D)N_0$$

 $Q(D) = a^*D^{-1} + 1 + aa^* + aD$
 $0 \le |a| < 1.$

(a) Find the zero forcing and minimum mean square error linear equalizers $W_{\text{ZFE}}(D)$ and $W_{\text{MMSE-LE}}(D)$. Use the variable $b = (q_0)(1 + \frac{1}{\text{SNR}_{\text{MFB}}})$ in your expression for $W_{\text{MMSE-LE}}(D)$.

Hint.

$$SNR_{MFB} = \frac{q_0 \mathcal{E}_x}{N_0}$$

- (b) By substituting $e^{-j2\pi\theta} = D$ and taking $\mathcal{E}_x/N_0 = 10$, use MATLAB to plot (for different values of θ) $W(e^{j2\pi\theta})$ for both ZFE and MMSE-LE for a = .5 and a = .9. Discuss the differences between the plots.
- (c) Find the roots r_1 , r_2 of the polynomial

$$aD^2 + bD + a^*.$$

Show that $b^2 - 4aa^*$ is always a real positive number (for $|a| \neq 1$). *Hint.* Consider the case where $\frac{1}{\text{SNR}_{\text{MFB}}} = 0$. Let r_2 be the root for which $|r_2| < |r_1|$. Show that $r_1r_2^* = 1$.

(d) Use the previous results to show that for the MMSE-LE

$$W(D) = \frac{1}{a} \frac{D}{(D - r_1)(D - r_2)} = \frac{1}{a(r_1 - r_2)} \left(\frac{r_1}{D - r_1} - \frac{r_2}{D - r_2}\right).$$

- (e) Show that for the MMSE-LE, $w_0 = \frac{1}{\sqrt{b^2 4aa^*}}$. By taking $\frac{1}{\text{SNR}_{\text{MFB}}} = 0$, show that for the ZFE, $w_0 = \frac{1}{1 aa^*}$.
- (f) For $\mathcal{E}_x = 1$ and $\sigma^2 = 0.1$ find expressions for σ_{ZFE}^2 , $\sigma_{\text{MMSE-LE}}^2$, γ_{ZFE} and $\gamma_{\text{MMSE-LE}}$.

$$\gamma_{\rm ZFE} = 10 \log_{10} \frac{\rm SNR_{\rm MFB}}{\rm SNR_{\rm ZFE}}$$

and

$$\gamma_{\rm MMSE-LE} = 10 \log_{10} \frac{\rm SNR_{\rm MFB}}{\rm SNR_{\rm MMSE-LE}}$$

(g) Find γ_{ZFE} and $\gamma_{\text{MMSE-LE}}$ in terms of the parameter *a* and calculate for a = 0, 0.5, 1. Sketch γ_{ZFE} and $\gamma_{\text{MMSE-LE}}$ for $0 \le a < 1$.