ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 19
Advanced Digital Communications
Solutions - Homework 8
December 8, 2010

Problem 1.

(a) For the Zero-forcing equalizer we have,

$$
\begin{equation*}
W_{Z F E}(D)=\frac{1}{Q(D)}=\frac{1}{a^{*} D^{-1}+1+a a^{*}+a D} \tag{1}
\end{equation*}
$$

For the MMSE-LE we have calculated in Problem 1- Part (c) that,

$$
\begin{align*}
W_{M M S E-L E}(D) & =\frac{1}{Q(D)+\frac{N_{0}}{E_{x}}} \tag{2}\\
& =\frac{1}{a^{*} D^{-1}+a D+1+a a^{*}+\frac{N_{0}}{E_{x}}} \tag{3}\\
& =\frac{1}{a^{*} D^{-1}+b+a D} \tag{4}
\end{align*}
$$

Since

$$
b=q_{0}\left(1+\frac{1}{S N R_{M F B}}\right)=q_{0}+\frac{N_{0}}{E_{x}}
$$

(b) Notice the pole-like behaviour for $\mathrm{a}=0.9$, and difference in power between $W_{Z F E}$ and $W_{M M S E-L E}$

Figure 1: $W_{Z F E}$ for $a=0.5$ (left) and $a=0.9$ (right)

Figure 2: $W_{M M S E-L E}$ for $a=0.5$ (left) and $a=0.9$ (right)
(c) The roots are given by:

$$
\begin{align*}
& r_{1}=\frac{-b-\sqrt{b^{2}-4 a a^{*}}}{2 a} \tag{5}\\
& r_{2}=\frac{-b+\sqrt{b^{2}-4 a a^{*}}}{2 a} \tag{6}
\end{align*}
$$

$b^{2}-4 a a^{*}$ is always real since b^{2} and $a a^{*}$ is real.

$$
\begin{align*}
b^{2}-4 a a^{*}= & {\left[\left(1+a a^{*}\right)\left(1+\frac{1}{S N R_{M F B}}\right)\right]^{2}-4 a a^{*} } \tag{7}\\
& \geq\left(1+a a^{*}\right)^{2}-4 a a^{*}=\left(1-a a^{*}\right)^{2}>0 \tag{8}
\end{align*}
$$

(d) $W_{M M S E-L E}(D)$ can be written as:

$$
W_{M M S E-L E}(D)=\frac{1}{a^{*} D^{-1}+b+a D}
$$

By regrouping and expanding it into partial fractions we obtain:

$$
\begin{align*}
W_{M M S E-L E}(D) & =\frac{1}{a} \frac{D}{\left(D-r_{1}\right)\left(D-r_{2}\right)} \tag{9}\\
& =\frac{1}{a}\left[\frac{A}{D-r_{1}}+\frac{B}{D-r_{2}}\right] \tag{10}\\
& =\frac{1}{a\left(r_{1}-r_{2}\right)}\left(\frac{r_{1}}{D-r_{1}}-\frac{r_{2}}{D-r_{2}}\right) \tag{11}
\end{align*}
$$

(e) We know that $\left|r_{2}\right|<\left|r_{1}\right|$ and $r_{1} r_{2}^{*}=1$. So, $\left|r_{2}\right|<1$. We can rewrite the expansion in part (d):

$$
\begin{aligned}
W(D) & =\frac{1}{a\left(r_{1}-r_{2}\right)}\left[\frac{-1}{1-D / r_{1}}-\frac{r_{2}}{D}\left(\frac{1}{1-\frac{r_{2}}{D}}\right)\right] \\
& =\frac{1}{a\left(r_{1}-r_{2}\right)}\left[-\left(1+\left(\frac{D}{r_{1}}\right)+\left(\frac{D}{r_{1}}\right)^{2}+\ldots\right)-\frac{r_{2}}{D}\left(\frac{1}{1-\frac{r_{2}}{D}}\right)\right]
\end{aligned}
$$

Thus, for the MMSE-LE we have:

$$
w_{0}=\frac{-1}{a\left(r_{1}-r_{2}\right)}=\frac{1}{\sqrt{b^{2}-4 a a^{*}}}
$$

For the ZFE, we take $\frac{1}{S N R_{M F B}}=0$ and thus $b=1+a a^{*}$ to obtain

$$
w_{0}=\frac{1}{1-a a^{*}}
$$

(f)

$$
\begin{align*}
S N R_{M F B} & =\frac{q_{0} E_{x}}{N_{0}}=10\left(1+a a^{*}\right) \\
S N R_{Z F E} & =\frac{E_{x}}{\sigma_{Z F E}^{2}}=\frac{E_{x}}{\sigma^{2} w_{0}} \tag{12}\\
& =10\left(1-a a^{*}\right) \tag{13}\\
\sigma_{Z F E}^{2} & =\sigma^{2} w_{0}=\frac{\sigma^{2}}{\left(1-a a^{*}\right)} \tag{14}\\
& =\frac{1}{10\left(1-a a^{*}\right)} \tag{15}\\
\gamma_{Z F E} & =10 \log \frac{\left(1+a a^{*}\right)}{\left(1-a a^{*}\right)} \tag{16}
\end{align*}
$$

Similarly,

$$
\begin{align*}
S N R_{M M S E-L E} & =\frac{E_{x}}{\sigma_{M M S E-L E^{2}}}=\frac{E_{x}}{\sigma^{2} w_{0}} \tag{17}\\
& =10 \sqrt{b^{2}-4 a a^{*}}=10 \sqrt{\left(b^{2}-4 a a^{*}\right)} \tag{18}\\
\sigma_{M M S E-L E}^{2} & =\sigma^{2} w_{0}=\frac{\sigma^{2}}{\sqrt{b^{2}-4 a a^{*}}} \tag{19}\\
& =\frac{1}{10 \sqrt{b^{2}-4 a a^{*}}} \tag{20}\\
\gamma_{M M S E-L E} & =10 \log \frac{1+a a^{*}}{\sqrt{b^{2}-4 a a^{*}}} \tag{21}\\
& =10 \log \frac{1+a a^{*}}{\sqrt{\left(1+a a^{*}+0.1\right)^{2}-4 a a^{*}}} \tag{22}
\end{align*}
$$

(g) Using what we have found in part (f)

$$
\begin{gathered}
\gamma_{Z F E}= \begin{cases}10 \log 1=0 & , \quad a=0 \\
10 \log \frac{1.25}{0.75}=2.218 & , \quad a=0.5 \\
10 \log \frac{2}{0}=\infty & , \quad a=1\end{cases} \\
\gamma_{M M S E-L E}= \begin{cases}10 \log \frac{1}{\sqrt{1.21}}=-0.41 & , \quad a=0 \\
10 \log \frac{1.25}{0.207}=1.39 & , \\
10 \log \frac{2}{0.64}=4.95 & , \\
\gamma_{1}=0.5\end{cases}
\end{gathered}
$$

Figure 3: $\gamma_{Z F E}$ (left) and $\gamma_{M M S E-L E}$ (right)

