ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 18
Homework 7 (Solutions)

Advanced Digital Communications
December 1, 2010

Problem 1.
(a) Via orthogonality, we can write

$$
E\left[(U(D)-\hat{U}(D)) Y^{*}\left(D^{-*}\right)\right]=0
$$

where, $U(D)=H(D) X(D)$ and $\hat{U}(D)=W(D) Y(D)$

Thus,

$$
\begin{array}{r}
E\left[(H(D) X(D)-W(D) Y(D)) Y^{*}\left(D^{-*}\right)\right]=0 \\
E\left[\left(H(D) X(D) Y^{*}\left(D^{-*}\right)\right]=E[W(D) Y(D)) Y^{*}\left(D^{-*}\right)\right] \tag{2}
\end{array}
$$

Using $Y^{*}\left(D^{-*}\right)=Q^{*}\left(D^{-*}\right) X^{*}\left(D^{-*}\right)+Z^{*}\left(D^{-*}\right)$, for the R.H.S. we get :

$$
\begin{align*}
E\left[\left(H(D) X(D) Y^{*}\left(D^{-*}\right)\right]\right. & =H(D) Q^{*}\left(D^{-*}\right) E_{x}+\underbrace{E\left[H(D) X(D) Z^{*}\left(D^{-*}\right)\right]}_{0} \\
& =H(D) Q(D) E_{x} \tag{3}
\end{align*}
$$

Since, X_{k} and Z_{k} are independent and $Q(D)=Q^{*}\left(D^{-*}\right)$
and for the L.H.S. :

$$
\begin{gathered}
\left.\left.E[W(D) Y(D)) Y^{*}\left(D^{-*}\right)\right]=W(D)\left[Q^{*}\left(D^{-*}\right) E\left[Y(D) X^{*}\left(D^{-*}\right)\right]+E\left[Y(D) Z^{*}\left(D^{-*}\right)\right)\right]\right] \\
=W(D)(Q(D)(E[Q(D) X(D)]+\underbrace{\left.\left.E\left[Z(D) X^{*}\left(D^{-*}\right)\right]\right)\right]}_{0}+E\left[(Q(D) X(D)+Z(D)) Z^{*}\left(D^{-*}\right)\right]) \\
=W(D)(Q^{2}(D) E_{x}+E[\left(Z(D) Z^{*}\left(D^{-*}\right)\right]+\underbrace{E\left[Q(D) X(D) Z^{*}\left(D^{-*}\right)\right]}_{0} \\
=W(D)\left(Q^{2}(D) E_{x}+N_{0} Q(D)\right)
\end{gathered}
$$

Thus,

$$
\begin{align*}
W(D)\left(Q^{2}(D) E_{x}+N_{0} Q(D)\right) & =H(D) Q(D) E_{x} \tag{4}\\
W(D) & =\frac{H(D) E_{x}}{Q(D) E_{x}+N_{0}} \tag{5}
\end{align*}
$$

(b)

$$
\begin{align*}
& S_{E}(D)=E\left[E(D) E^{*}\left(D^{-*}\right)\right] \tag{6}\\
= & E\left[(H(D) X(D)-W(D) Y(D))\left(H^{*}\left(D^{-*}\right) X^{*}\left(D^{-*}\right)-W^{*}\left(D^{-*}\right) Y^{*}\left(D^{-*}\right)\right)\right] \tag{7}\\
= & H(D) H^{*}\left(D^{-*}\right) E_{x}+W(D) W^{*}\left(D^{-*}\right)\left(Q^{2}(D) E_{x}+N_{0} Q(D)\right) \\
& -W(D) Q(D) H^{*}\left(D^{-*}\right) E_{x}-W^{*}\left(D^{-*}\right) Q(D) H(D) E_{x} \tag{8}
\end{align*}
$$

Substituting the $\mathrm{W}(\mathrm{D})$ found in part a, we obtain

$$
\begin{equation*}
S_{E}(D)=\frac{H(D) H^{*}\left(D^{-*}\right) N_{0} E_{x}}{Q(D) E_{x}+N_{0}} \tag{9}
\end{equation*}
$$

(c) If $\mathrm{H}(\mathrm{D})=1$, the operation performed becomes a MMSE linear estimation with

$$
W(D)=\frac{E_{x}}{Q(D) E_{x}+N_{0}}
$$

Problem 2. (a) We want to minimized the MSE,

$$
\mathrm{MSE}=E\left(x^{2}\right)+E\left(\hat{x}^{2}\right)-2 E(x \hat{x})
$$

so,

$$
\mathrm{MSE}=E\left(x^{2}\right)+a^{2}\left|c^{t} h\right|^{2} E\left(x^{2}\right)+a^{2} \frac{N_{0}}{2}-2 a\left|c^{t} h\right| E\left(x^{2}\right)
$$

By differentiating with respect to a and setting it equal to zero we will have the result.
(b) The value of MSE is

$$
\frac{\frac{N_{0}}{2} E\left(x^{2}\right)}{\left|c^{t} h\right|^{2} E\left(x^{2}\right)+\frac{N_{0}}{2}}
$$

By simplifying above we will have the result.
(c) To minimize the MSE we should maximize the denominator, by Cauchy-Schwarz inequality we know

$$
\left|c^{t} h\right|^{2} \leq\|h\|^{2}
$$

and it satisfies the equality if h and c are proportional to each other, putting the norm constraint we will have $c=\frac{h}{|h|}$.
Problem 3. We set $\hat{x}=A^{t} Y$. By orthogonality principle we have,

$$
E\left((X-\hat{X}) Y^{*}\right)=0
$$

So we have

$$
E\left(X Y^{*}\right)=E\left(A^{t} Y Y^{*}\right)
$$

So in general we will have

$$
\left[\begin{array}{ll}
E\left(Y_{1} Y_{1}^{*}\right) & E\left(Y_{1} Y_{2}^{*}\right) \\
E\left(Y_{2} Y_{1}^{*}\right) & E\left(Y_{2} Y_{2}^{*}\right)
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
E\left(X Y_{1}^{*}\right) \\
E\left(X Y_{2}^{*}\right)
\end{array}\right]
$$

Which is

$$
\left[\begin{array}{cc}
\mathcal{E}_{x}+E\left(Z_{1} Z_{1}^{*}\right) & \mathcal{E}_{x}+E\left(Z_{1} Z_{2}^{*}\right) \\
\mathcal{E}_{x}+E\left(Z_{2} Z_{1}^{*}\right) & \mathcal{E}_{x}+E\left(Z_{2} Z_{2}^{*}\right)
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathcal{E}_{x} \\
\mathcal{E}_{x}
\end{array}\right]
$$

We solve the above linear equations for each case
(a)

$$
a_{1}=a_{2}=\frac{\mathcal{E}_{x}}{2 \mathcal{E}_{x}+1}
$$

(b)

$$
a_{1}=a_{2}=\frac{\mathcal{E}_{x}}{2 \mathcal{E}_{x}+1+\frac{\sqrt{2}}{2}}
$$

(c) In this case the set of linear equations has infinite solutions, any of them is good for us. In particular

$$
a_{1}=a_{2}=\frac{\mathcal{E}_{x}}{2\left(\mathcal{E}_{x}+1\right)}
$$

Problem 4. (a)

$$
\begin{aligned}
\widehat{X}_{a}= & \frac{H_{a}^{*} \sigma_{x}^{2}}{H_{a} H_{a}^{*} \sigma_{x}^{2}+\sigma_{a}^{2}} Y_{a}, \quad \widehat{X}_{b}=\frac{H_{b}^{*} \sigma_{x}^{2}}{H_{b} H_{b}^{*} \sigma_{x}^{2}+\sigma_{b}^{2}} Y_{b} \\
P_{a} & =\sigma_{x}^{2}-H_{a}^{*} \sigma_{x}^{2}\left(H_{a} H_{a}^{*} \sigma_{x}^{2}+\sigma_{a}^{2}\right)^{-1} H_{a} \sigma_{x}^{2} \\
& =\frac{\sigma_{x}^{2} \sigma_{a}^{2}}{\left|H_{a}\right|^{2} \sigma_{x}^{2}+\sigma_{a}^{2}}, \\
P_{b} & =\sigma_{x}^{2}-H_{b}^{*} \sigma_{x}^{2}\left(H_{b} H_{b}^{*} \sigma_{x}^{2}+\sigma_{b}^{2}\right)^{-1} H_{b} \sigma_{x}^{2} \\
& =\frac{\sigma_{x}^{2} \sigma_{b}^{2}}{\left|H_{b}\right|^{2} \sigma_{x}^{2}+\sigma_{b}^{2}}
\end{aligned}
$$

(b) Using the identities

$$
\begin{aligned}
\widehat{X}_{a} & =\left(\frac{1}{\sigma_{x}^{2}}+\frac{H_{a} H_{a}^{*}}{\sigma_{a}^{2}}\right)^{-1} \frac{H_{a}^{*}}{\sigma_{a}^{2}} Y_{a}, \\
\Rightarrow\left(\frac{1}{\sigma_{x}^{2}}+\frac{H_{a} H_{a}^{*}}{\sigma_{a}^{2}}\right) \widehat{X}_{a} & =\frac{H_{a}^{*}}{\sigma_{a}^{2}} Y_{a}, \\
\Rightarrow P_{a}^{-1} \widehat{X}_{a} & =\frac{H_{a}^{*}}{\sigma_{a}^{2}} Y_{a} .
\end{aligned}
$$

Similarly,

$$
P_{b}^{-1} \widehat{X}_{b}=\frac{H_{b}^{*}}{\sigma_{b}^{2}} Y_{b}
$$

(c) Now

$$
\begin{aligned}
\widehat{X}=\left[\begin{array}{ll}
H_{a}^{*} & H_{b}^{*}
\end{array}\right] \sigma_{x}^{2}\left[\begin{array}{cc}
H_{a} H_{a}^{*} \sigma_{x}^{2}+\sigma_{a}^{2} & H_{a} H_{b}^{*} \sigma_{x}^{2} \\
H_{b} H_{a}^{*} \sigma_{x}^{2} & H_{b} H_{b}^{*} \sigma_{x}^{2}+\sigma_{b}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
Y_{a} \\
Y_{b}
\end{array}\right] \\
P=\mathcal{E}_{x}-\sigma_{x}^{2}\left[\begin{array}{ll}
H_{a}^{*} & H_{b}^{*}
\end{array}\right]\left[\begin{array}{cc}
H_{a} H_{a}^{*} \sigma_{x}^{2}+\sigma_{a}^{2} & H_{a} H_{b}^{*} \sigma_{x}^{2} \\
H_{b} H_{a}^{*} \sigma_{x}^{2} & H_{b} H_{b}^{*} \sigma_{x}^{2}+\sigma_{b}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
H_{a} \\
H_{b}
\end{array}\right] \sigma_{x .}^{2} .
\end{aligned}
$$

Using the matrix identities

$$
\mathbf{H}=\left[\begin{array}{c}
H_{a} \\
H_{b}
\end{array}\right], \mathbf{R}_{\mathbf{v}}=\left[\begin{array}{cc}
\sigma_{a}^{2} & 0 \\
0 & \sigma_{b}^{2}
\end{array}\right], \mathbf{R}_{\mathbf{x}}=\sigma_{x}^{2}
$$

We get

$$
\begin{gathered}
\widehat{X}=\left(\frac{1}{\sigma_{x}^{2}}+\left[\begin{array}{ll}
H_{a}^{*} & H_{b}^{*}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{a}^{2} & 0 \\
0 & \sigma_{b}^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
H_{a} \\
H_{b}
\end{array}\right]\right)^{-1}\left[\begin{array}{ll}
H_{a}^{*} & H_{b}^{*}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{a}^{2} & 0 \\
0 & \sigma_{b}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
Y_{a} \\
Y_{b}
\end{array}\right] \\
\Rightarrow \quad P^{-1} \widehat{X}=\frac{H_{a}^{*}}{\sigma_{a}^{2}} Y_{a}+\frac{H_{b}^{*}}{\sigma_{b}^{2}} Y_{b}=P_{a}^{-1} \widehat{X}_{a}+P_{b}^{-1} \widehat{X}_{b} .
\end{gathered}
$$

Now

$$
\begin{aligned}
P^{-1} & =\left(\frac{1}{\sigma_{x}^{2}}+\left[\begin{array}{ll}
H_{a}^{*} & H_{b}^{*}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{a}^{2} & 0 \\
0 & \sigma_{b}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
H_{a} \\
H_{b}
\end{array}\right]\right), \\
& =\left(\frac{1}{\sigma_{x}^{2}}+\frac{H_{a}^{*} H_{a}}{\sigma_{a}^{2}}+\frac{H_{b}^{*} H_{b}}{\sigma_{b}^{2}}\right), \\
& =P_{a}^{-1}+P_{b}^{-1}-\frac{1}{\sigma_{x}^{2}} .
\end{aligned}
$$

